Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 121: 111815, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579459

RESUMO

This work deals with two new molecule-based materials, namely NiII-complexes of general formulae [Ni(L1)2] (Ni1) and [Ni(L2)2] (Ni2), where L1 = trans-cinnamaldehyde-N(4)-methyl thiosemicarbazone and L2 = trans-cinnamaldehyde-N(4)-ethyl thiosemicarbazone, as potential antitumor agents. Both compounds were characterized by elemental analysis, molar conductivity and spectroscopic techniques (FTIR and NMR). Their molecular structures were obtained by single-crystal X-ray diffraction analysis. Each one crystallizes in a monoclinic space group P 21/c, also the asymmetric unit comprises of one NiII ion located on an inversion centre and one anionic ligand, which acts as a κ2N,S-donor affording a five-membered metallaring. The compounds were screened against two selected tumour cell lines (MCF-7 and A549) and non-tumour fibroblasts cell line (MRC-5) via MTT assays. In both tumour cells, all compounds exhibited higher cytotoxicity than the control drug (cisplatin). The IC50 values ranges of 3.70 - 41.37 µM and 1.06 - 14.91 µM were found for MCF-7 and A549, respectively. Importantly, all of them were less toxicity than cisplatin in MRC-5 with SI values ranged at 11.80 - 86.60. The red blood cell (RBC) assay revealed Ni2 as non-toxic due to its reduced haemolytic effect (0--9% at 1--10 µM). The DNA binding was investigated through a combination of spectrophotometric absorption and emission titrations, electrophoresis, and circular dichroism experiments. As a result, these metal complexes were not able to strongly binding to DNA (Kb values ~104 mol L--1) but suggesting groove-binding interactions. The scavenging ability of them towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical was also evaluated in this work, but no important antioxidant behaviour was detected. Further, the interaction of Ni1 and Ni2 to human serum albumin (HSA) was explored by quenching of tryptophan emission, warfarin competitive assay, and molecular docking protocols. The HSA binding analyses indicated good affinity of both complexes to Sudlow site I (Kb values ⁓103 mol L-1).


Assuntos
Antineoplásicos , Complexos de Coordenação , Tiossemicarbazonas , Antineoplásicos/farmacologia , Humanos , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular
2.
J Pept Res ; 65(5): 502-11, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15853944

RESUMO

Bacterial DNA gyrase, has been identified as the target of several antibacterial agents, including the coumarin drugs. The coumarins inhibit the gyrase action by competitive binding to the ATP-binding site of DNA gyrase B (GyrB) protein. The high in vitro inhibitory potency of coumarins against DNA gyrase reactions has raised interest in studies on coumarin-gyrase interactions. In this context, a series of low-molecular weight peptides, including the coumarin resistance-determining region of subunit B of Escherichia coli gyrase, has been designed and synthesized. The first peptide model was built using the natural fragment 131-146 of GyrB and was able to bind to novobiocin (K(a) = 1.8 +/- 0.2 x 10(5)/m) and ATP (K(a) = 1.9 +/- 0.4 x 10(3)/m). To build the other sequences, changes in the Arg(136) residue were introduced so that the binding to the drug was progressively reduced with the hydrophobicity of this residue (K(a) = 1.3 +/- 0.1 x 10(5)/m and 1.0 +/- 0.2 x 10(5)/m for Ser and His, respectively). No binding was observed for the change Arg(136) to Leu. In contrast, the binding to ATP was not altered, independently of the changes promoted. On the contrary, for peptide-coumarin and peptide-ATP complexes, Mg(2+) appears to modulate the binding process. Our results demonstrate the crucial role of Arg(136) residue for the stability of coumarin-gyrase complex as well as suggest a different binding site for ATP and in both cases the interactions are mediated by magnesium ions.


Assuntos
Cumarínicos/metabolismo , DNA Girase/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Arginina/metabolismo , Sítios de Ligação , Ligação Competitiva , Cromatografia de Afinidade , Cumarínicos/química , DNA Girase/química , Desenho de Fármacos , Proteínas de Escherichia coli , Magnésio/química , Magnésio/metabolismo , Dados de Sequência Molecular , Novobiocina/química , Novobiocina/metabolismo , Fragmentos de Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA