Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 52(4): 1471-8, 2016 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-27079728

RESUMO

Astrocytes actively participate in neuro-inflammatory processes associated to Alzheimer's disease (AD), and other brain pathologies. We recently showed that an astrocyte-specific intracellular signaling pathway involving an interaction of the phosphatase calcineurin with the transcription factor FOXO3 is a major driver in AD-associated pathological inflammation, suggesting a potential new druggable target for this devastating disease. We have now developed decoy molecules to interfere with calcineurin/FOXO3 interactions, and tested them in astrocytes and neuronal co-cultures exposed to amyloid-ß (Aß) toxicity. We observed that interference of calcineurin/FOXO3 interactions exerts a protective action against Aß-induced neuronal death and favors the production of a set of growth factors that we hypothesize form part of a cytoprotective pathway to resolve inflammation. Furthermore, interference of the Aß-induced interaction of calcineurin with FOXO3 by decoy compounds significantly decreased amyloid-ß protein precursor (AßPP) synthesis, reduced the AßPP amyloidogenic pathway, resulting in lower Aß levels, and blocked the expression of pro-inflammatory cytokines TNFα and IL-6 in astrocytes. Collectively, these data indicate that interrupting pro-inflammatory calcineurin/FOXO3 interactions in astrocytes triggered by Aß accumulation in brain may constitute an effective new therapeutic approach in AD. Future studies with intranasal delivery, or brain barrier permeable decoy compounds, are warranted.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Astrócitos/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proteína Forkhead Box O3/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Animais , Astrócitos/metabolismo , Calcineurina/metabolismo , Inibidores de Calcineurina/farmacologia , Proteína Forkhead Box O3/metabolismo , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA