Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(18): 12750-12757, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38669102

RESUMO

Interest in applying proton-coupled electron transfer (PCET) reagents in reductive electro- and photocatalysis requires strategies that mitigate the competing hydrogen evolution reaction. Photoexcitation of a PCET donor to a charge-separated state (CSS) can produce a powerful H-atom donor capable of being electrochemically recycled at a comparatively anodic potential corresponding to its ground state. However, the challenge is designing a mediator with a sufficiently long-lived excited state for bimolecular reactivity. Here, we describe a powerful ferrocene-derived photoelectrochemical PCET mediator exhibiting an unusually long-lived CSS (τ ∼ 0.9 µs). In addition to detailed photophysical studies, proof-of-concept stoichiometric and catalytic proton-coupled reductive transformations are presented, which illustrate the promise of this approach.

2.
J Am Chem Soc ; 146(1): 954-960, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38156951

RESUMO

Harnessing sunlight via photosensitizing molecules is key for novel optical applications and solar-to-chemical energy conversion. Exploiting abundant metals such as iron is attractive but becomes challenging due to typically fast nonradiative relaxation processes. In this work, we report on the luminescence and excited-state reactivity of the heteroleptic [FeIII(pzTp)(CN)3]- complex (pzTp = tetrakis(pyrazolyl)borate), which incorporates a σ-donating trispyrazolyl chelate ligand and three monodentate σ-donating and π-accepting cyanide ligands. Contrary to the nonemissive [Fe(CN)6]3-, a broad emission band centered at 600 nm at room temperature has been recorded for the heteroleptic analogue attributed to the radiative deactivation from a 2LMCT excited state with a luminescence quantum yield of 0.02% and a lifetime of 80 ps in chloroform at room temperature. Bimolecular reactivity of the 2LMCT excited state was successfully applied to different alcohol photo-oxidation, identifying a cyanide-H bonding as a key reaction intermediate. Finally, this research demonstrated the exciting potential of [Fe(pzTp)(CN)3]- as a photo-oxidant, paving the way for further exploration and development of emissive Fe-based photosensitizers competent for photochemical transformations.

3.
Angew Chem Int Ed Engl ; 62(9): e202216693, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36592374

RESUMO

Whereas synthetically catalyzed nitrogen reduction (N2 R) to produce ammonia is widely studied, catalysis to instead produce hydrazine (N2 H4 ) has received less attention despite its considerable mechanistic interest. Herein, we disclose that irradiation of a tris(phosphine)borane (P3 B ) Fe catalyst, P3 B Fe+ , significantly alters its product profile to increase N2 H4 versus NH3 ; P3 B Fe+ is otherwise known to be highly selective for NH3 . We posit a key terminal hydrazido intermediate, P3 B Fe=NNH2 , as selectivity-determining. Whereas its singlet ground state undergoes protonation to liberate NH3 , a low-lying triplet excited state leads to reactivity at Nα and formation of N2 H4 . Associated electrochemical and spectroscopic studies establish that N2 H4 lies along a unique product pathway; NH3 is not produced from N2 H4 . Our findings are distinct from the canonical mechanism for hydrazine formation, which proceeds via a diazene (HN=NH) intermediate and showcase light as a tool to tailor selectivity.

4.
ACS Catal ; 13(1): 72-78, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38487038

RESUMO

Electrocatalytic nitrogen reduction (N2R) mediated by well-defined molecular catalysts is poorly developed by comparison with other reductive electrocatalytic transformations. Herein, we explore the viability of electrocatalytic N2R mediated by a molecular Mo-PNP complex. A careful choice of acid, electrode material, and electrolyte mitigates electrode-mediated HER under direct electrolysis and affords up to 11.7 equiv of NH3 (Faradaic efficiency < 43%) at -1.89 V versus Fc+/Fc. The addition of a proton-coupled electron transfer (PCET) mediator has no effect. The data presented are rationalized by an initial electron transfer (ET) that sets the applied bias needed and further reveal an important impact of [Mo] concentration, thereby pointing to potential bimolecular steps (e.g., N2 splitting) as previously proposed during chemically driven N2R catalysis. Finally, facile reductive protonation of [Mo(N)Br(HPNP)] with pyridinium acids is demonstrated.

5.
J Am Chem Soc ; 144(43): 20118-20125, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36264765

RESUMO

The generation of metal hydride intermediates during reductive electrocatalysis in the presence of acid most commonly leads to the hydrogen evolution reaction (HER). Redirecting the reactivity profile of such hydride intermediates toward the reduction of unsaturated substrates is an exciting opportunity in catalysis but presents a challenge in terms of catalyst selectivity. In this study, we demonstrate that a prototypical phosphine-supported Ni-HER catalyst can be repurposed toward the electrocatalytic reduction of a model substrate, methyl phenylpropiolate, via hydride transfer from a NiII-H when interfaced with a metallocene-derived proton-coupled electron transfer (PCET) mediator. Key to success is generation of the NiII-H at a potential pinned to that of the PCET mediator which is appreciably anodic of the onset of HER. Electrochemical, spectroscopic, and theoretical data point to a working mechanism where a PCET step from the metallocene-derived mediator to NiII generates NiIII-H and is rate-determining; the latter NiIII-H is then readily reduced to a NiII-H, which is competent for substrate reduction. Additional studies show that this tandem PCET-mediated hydride generation can afford high stereoselectivity (e.g., >20:1 Z/E using a phosphine-cobalt precatalyst with ethyl 2-heptynoate) and can also be used for the reduction of α,ß-unsaturated ketones.


Assuntos
Hidrogênio , Prótons , Hidrogênio/química , Metalocenos , Transporte de Elétrons
6.
Nature ; 609(7925): 71-76, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36045240

RESUMO

New electrochemical ammonia (NH3) synthesis technologies are of interest as a complementary route to the Haber-Bosch process for distributed fertilizer generation, and towards exploiting ammonia as a zero-carbon fuel produced via renewably sourced electricity1. Apropos of these goals is a surge of fundamental research targeting heterogeneous materials as electrocatalysts for the nitrogen reduction reaction (N2RR)2. These systems generally suffer from poor stability and NH3 selectivity; the hydrogen evolution reaction (HER) outcompetes N2RR3. Molecular catalyst systems can be exquisitely tuned and offer an alternative strategy4, but progress has been thwarted by the same selectivity issue; HER dominates. Here we describe a tandem catalysis strategy that offers a solution to this puzzle. A molecular complex that can mediate an N2 reduction cycle is partnered with a co-catalyst that interfaces the electrode and an acid to mediate proton-coupled electron transfer steps, facilitating N-H bond formation at a favourable applied potential (-1.2 V versus Fc+/0) and overall thermodynamic efficiency. Certain intermediates of the N2RR cycle would be otherwise unreactive via uncoupled electron transfer or proton transfer steps. Structurally diverse complexes of several metals (W, Mo, Os, Fe) also mediate N2RR electrocatalysis at the same potential in the presence of the mediator, pointing to the generality of this tandem approach.

7.
Angew Chem Int Ed Engl ; 61(40): e202209075, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35922381

RESUMO

A cobalt complex bearing a κ-N3 P2 ligand is presented (1+ or CoI (L), where L is (1E,1'E)-1,1'-(pyridine-2,6-diyl)bis(N-(3-(diphenylphosphanyl)propyl)ethan-1-imine). Complex 1+ is stable under air at oxidation state CoI thanks to the π-acceptor character of the phosphine groups. Electrochemical behavior of 1+ reveals a two-electron CoI /CoIII oxidation process and an additional one-electron reduction, which leads to an enhancement in the current due to hydrogen evolution reaction (HER) at Eonset =-1.6 V vs Fc/Fc+ . In the presence of 1 equiv of bis(trifluoromethane)sulfonimide, 1+ forms the cobalt hydride derivative CoIII (L)-H (22+ ), which has been fully characterized. Further addition of 1 equiv of CoCp*2 (Cp* is pentamethylcyclopentadienyl) affords the reduced CoII (L)-H (2+ ) species, which rapidly forms hydrogen and regenerates the initial CoI (L) (1+ ). The spectroscopic characterization of catalytic intermediates together with DFT calculations support an unusual bimolecular homolytic mechanism in the catalytic HER with 1+ .

8.
Inorg Chem ; 61(17): 6672-6678, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35436099

RESUMO

Recent studies showcase reductive concerted proton-electron transfer (CPET) as a powerful strategy for transferring a net hydrogen atom to organic substrates; however, direct application of CPET in the context of C-C bond formation beyond homocoupling is underexplored. We report herein the expansion of electrocatalytic CPET (eCPET) using a Brønsted base-appended cobaltocene mediator ([CpCoCpNMe2][OTf]) with keto-olefin substrates that undergo cyclization subsequent to ketyl radical generation via eCPET. Using acetophenone-derived substrates with tethered acrylates as radical acceptors, in the presence of tosylic acid, we demonstrate that ketyl-olefin cyclization is achieved by characterization of cis-lactone and alkene products. Mechanistic analysis of this 2 H+/2 e- process reveals a mixed order in substrate and acid and a Hammett plot with a modest negative slope, highlighting the contribution of sequential CPET and ET/PT steps involved in the overall rate of the reaction and providing support for initial O-H bond formation. The ability to access ketyl radicals at comparatively mild reduction potentials via controlled potential electrolysis enables functional group tolerance across a range of substrates.


Assuntos
Alcenos , Prótons , Alcenos/química , Catálise , Ciclização , Elétrons , Oxirredução
9.
J Am Chem Soc ; 143(25): 9303-9307, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34138550

RESUMO

Reductive concerted proton-electron transfer (CPET) is poorly developed for the reduction of C-C π-bonds, including for activated alkenes that can succumb to deleterious pathways (e.g., a competing hydrogen evolution reaction or oligomerization) in a standard electrochemical reduction. We demonstrate herein that selective hydrogenation of the C-C π-bond of fumarate esters can be achieved via electrocatalytic CPET (eCPET) using a CPET mediator comprising cobaltocene with a tethered Brønsted base. High selectivity for electrocatalytic hydrogenation is observed only when the mediator is present. Mechanistic analysis sheds light on two distinct kinetic regimes based on the substrate concentration: low fumarate concentrations operate via rate-limiting CPET followed by an electron-transfer/proton-transfer (ET/PT) step, whereas high concentrations operate via CPET followed by a rate-limiting ET/PT step.

10.
Angew Chem Int Ed Engl ; 60(34): 18639-18644, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34015172

RESUMO

Water oxidation to dioxygen is one of the key reactions that need to be mastered for the design of practical devices based on water splitting with sunlight. In this context, water oxidation catalysts based on first-row transition metal complexes are highly desirable due to their low cost and their synthetic versatility and tunability through rational ligand design. A new family of dianionic bpy-amidate ligands of general formula H2 LNn- (LN is [2,2'-bipyridine]-6,6'-dicarboxamide) substituted with phenyl or naphthyl redox non-innocent moieties is described. A detailed electrochemical analysis of [(L4)Cu]2- (L4=4,4'-(([2,2'-bipyridine]-6,6'-dicarbonyl)bis(azanediyl))dibenzenesulfonate) at pH 11.6 shows the presence of a large electrocatalytic wave for water oxidation catalysis at an η=830 mV. Combined experimental and computational evidence, support an all ligand-based process with redox events taking place at the aryl-amide groups and at the hydroxido ligands.

11.
J Am Chem Soc ; 142(41): 17434-17446, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32935982

RESUMO

Water oxidation catalysis stands out as one of the most important reactions to design practical devices for artificial photosynthesis. Use of late first-row transition metal (TM) complexes provides an excellent platform for the development of inexpensive catalysts with exquisite control on their electronic and structural features via ligand design. However, the difficult access to their high oxidation states and the general labile character of their metal-ligand bonds pose important challenges. Herein, we explore a copper complex (12-) featuring an extended, π-delocalized, tetra-amidate macrocyclic ligand (TAML) as water oxidation catalyst and compare its activity to analogous systems with lower π-delocalization (22- and 32-). Their characterization evidences a special metal-ligand cooperativity in accommodating the required oxidative equivalents using 12- that is absent in 22- and 32-. This consists of charge delocalization promoted by easy access to different electronic states at a narrow energy range, corresponding to either metal-centered or ligand-centered oxidations, which we identify as an essential factor to stabilize the accumulated oxidative charges. This translates into a significant improvement in the catalytic performance of 12- compared to 22- and 32- and leads to one of the most active and robust molecular complexes for water oxidation at neutral pH with a kobs of 140 s-1 at an overpotential of only 200 mV. In contrast, 22- degrades under oxidative conditions, which we associate to the impossibility of efficiently stabilizing several oxidative equivalents via charge delocalization, resulting in a highly reactive oxidized ligand. Finally, the acyclic structure of 32- prevents its use at neutral pH due to acidic demetalation, highlighting the importance of the macrocyclic stabilization.

12.
iScience ; 23(8): 101378, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32745986

RESUMO

Water splitting with sunlight is today one of the most promising strategies that can be used to start the imperatively needed transition from fossil to solar fuels. To achieve this, one of the key reactions that need to be mastered is the electrocatalytic oxidation of water to dioxygen. Great developments have been achieved using transition metal complexes mainly based on Ru, but for technological applications it is highly desirable to be able to use earth-abundant transition metals. The intrinsic chemistry of first row transition metals and in particular the lability of their M-L bonds in water imposes serious challenges for the latter to work as real molecular catalysts. The present work addresses this issue based on a molecular pentanuclear Fe5 complex and describes the different protocols and tests that need to be carried out in order to identify the real active species, responsible for the generation of dioxygen.

13.
Science ; 369(6505): 850-854, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32792399

RESUMO

Electrocatalytic approaches to the activation of unsaturated substrates via reductive concerted proton-electron transfer (CPET) must overcome competing, often kinetically dominant hydrogen evolution. We introduce the design of a molecular mediator for electrochemically triggered reductive CPET through the synthetic integration of a Brønsted acid and a redox mediator. Cathodic reduction at the cobaltocenium redox mediator substantially weakens the homolytic nitrogen-hydrogen bond strength of a Brønsted acidic anilinium tethered to one of the cyclopentadienyl rings. The electrochemically generated molecular mediator is demonstrated to transform a model substrate, acetophenone, to its corresponding neutral α-radical via a rate-determining CPET.

14.
Nat Chem ; 12(1): 82-89, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31636394

RESUMO

Water oxidation is the key kinetic bottleneck of photoelectrochemical devices for fuel synthesis. Despite advances in the identification of intermediates, elucidating the catalytic mechanism of this multi-redox reaction on metal-oxide photoanodes remains a significant experimental and theoretical challenge. Here, we report an experimental analysis of water oxidation kinetics on four widely studied metal oxides, focusing particularly on haematite. We observe that haematite is able to access a reaction mechanism that is third order in surface-hole density, which is assigned to equilibration between three surface holes and M(OH)-O-M(OH) sites. This reaction exhibits low activation energy (Ea ≈ 60 meV). Density functional theory is used to determine the energetics of charge accumulation and O-O bond formation on a model haematite (110) surface. The proposed mechanism shows parallels with the function of the oxygen evolving complex of photosystem II, and provides new insights into the mechanism of heterogeneous water oxidation on a metal oxide surface.

15.
Chemistry ; 24(24): 6464-6472, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29470842

RESUMO

We report the light-induced electronic and geometric changes taking place within a heteroleptic CuI photosensitizer, namely [(xant)Cu(Me2 phenPh2 )]PF6 (xant=xantphos, Me2 phenPh2 =bathocuproine), by time-resolved X-ray absorption spectroscopy in the ps-µs time regime. Time-resolved X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analysis enabled the elucidation of the electronic and structural configuration of the copper center in the excited state as well as its decay dynamics in different solvent conditions with and without triethylamine acting as a sacrificial electron donor. A three-fold decrease in the decay lifetime of the excited state is observed in the presence of triethylamine, showing the feasibility of the reductive quenching pathway in the latter case. A prominent pre-edge feature is observed in the XANES spectrum of the excited state upon metal to charge ligand transfer transition, showing an increased hybridization of the 3d states with the ligand p orbitals in the tetrahedron around the Cu center. EXAFS and density functional theory illustrate a significant shortening of the Cu-N and an elongation of the Cu-P bonds together with a decrease in the torsional angle between the xantphos and bathocuproine ligand. This study provides mechanistic time-resolved understanding for the development of improved heteroleptic CuI photosensitizers, which can be used for the light-driven production of hydrogen from water.

16.
J Am Chem Soc ; 139(37): 12907-12910, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28853285

RESUMO

A molecular water oxidation catalyst based on the copper complex of general formula [(Lpy)CuII]2-, 22-, (Lpy is 4-pyrenyl-1,2-phenylenebis(oxamidate) ligand) has been rationally designed and prepared to support a more extended π-conjugation through its structure in contrast with its homologue, the [(L)CuII]2- water oxidation catalyst, 12- (L is o-phenylenebis(oxamidate)). The catalytic performance of both catalysts has been comparatively studied in homogeneous phase and in heterogeneous phase by π-stacking anchorage to graphene-based electrodes. In the homogeneous system, the electronic perturbation provided by the pyrene functionality translates into a 150 mV lower overpotential for 22- with respect to 12- and an impressive increase in the kcat from 6 to 128 s-1. Upon anchorage, π-stacking interactions with the graphene sheets provide further π-delocalization that improves the catalytic performance of both catalysts. In this sense, 22- turned out to be the most active catalyst due to the double influence of both the pyrene and the graphene, displaying an overpotential of 538 mV, a kcat of 540 s-1 and producing more than 5300 TONs.

17.
Chem Soc Rev ; 46(20): 6088-6098, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-28718467

RESUMO

Energy has been a central subject for human development from Homo erectus to date. The massive use of fossil fuels during the last 50 years has generated a large CO2 concentration in the atmosphere that has led to the so-called global warming. It is very urgent to come up with C-neutral energy schemes to be able to preserve Planet Earth for future generations to come and still preserve our modern societies' life style. One of the potential solutions is water splitting with sunlight (hν-WS) that is also associated with "artificial photosynthesis", since its working mode consists of light capture followed by water oxidation and proton reduction processes. The hydrogen fuel generated in this way is named as "solar fuel". For this set of reactions, the catalytic oxidation of water to dioxygen is one of the crucial processes that need to be understood and mastered in order to build up potential devices based on hν-WS. This tutorial describes the different important aspects that need to be considered to come up with efficient and oxidatively robust molecular water oxidation catalysts (Mol-WOCs). It is based on our own previous work and completed with essential contributions from other active groups in the field. We mainly aim at describing how the ligands can influence the properties of the Mol-WOCs and showing a few key examples that overall provide a complete view of today's understanding in this field.

18.
Chem Commun (Camb) ; 53(18): 2725-2728, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28198893

RESUMO

We report the use of time-resolved X-ray absorption spectroscopy in the ns-µs time scale to track the light induced two electron transfer processes in a multi-component photocatalytic system, consisting of [Ru(bpy)3]2+/ a diiron(iii,iii) model/triethylamine. EXAFS analysis with DFT calculations confirms the structural configurations of the diiron(iii,iii) and reduced diiron(ii,ii) states.

19.
Chemistry ; 22(15): 5261-8, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26919725

RESUMO

Three distinct functionalisation strategies have been applied to the in,in-[{Ru(II)(trpy)}2(µ-bpp)(H2O)2](3+) (trpy=2,2':6',2''-terpyridine, bpp=bis(pyridine)pyrazolate) water-oxidation catalyst framework to form new derivatives that can adsorb onto titania substrates. Modifications included the addition of sulfonate, carboxylate, and phosphonate anchoring groups to the terpyridine and bis(pyridyl)pyrazolate ligands. The complexes were characterised in solution by using 1D NMR, 2D NMR, and UV/Vis spectroscopic analysis and electrochemical techniques. The complexes were then anchored on TiO2-coated fluorinated tin oxide (FTO) films, and the reactivity of these new materials as water-oxidation catalysts was tested electrochemically through controlled-potential electrolysis (CPE) with oxygen evolution detected by headspace analysis with a Clark electrode. The results obtained highlight the importance of the catalyst orientation with respect to the titania surface in regard to its capacity to catalytically oxidize water to dioxygen.

20.
J Am Chem Soc ; 137(21): 6758-61, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25984748

RESUMO

A new family of tetra-anionic tetradentate amidate ligands, N1,N1'-(1,2-phenylene)bis(N2-methyloxalamide) (H4L1), and its derivatives containing electron-donating groups at the aromatic ring have been prepared and characterized, together with their corresponding anionic Cu(II) complexes, [(LY)Cu](2-). At pH 11.5, the latter undergoes a reversible metal-based III/II oxidation process at 0.56 V and a ligand-based pH-dependent electron-transfer process at 1.25 V, associated with a large electrocatalytic water oxidation wave (overpotential of 700 mV). Foot-of-the-wave analysis gives a catalytic rate constant of 3.6 s(-1) at pH 11.5 and 12 s(-1) at pH 12.5. As the electron-donating capacity at the aromatic ring increases, the overpotential is drastically reduced down to a record low of 170 mV. In addition, DFT calculations allow us to propose a complete catalytic cycle that uncovers an unprecedented pathway in which crucial O-O bond formation occurs in a two-step, one-electron process where the peroxo intermediate generated has no formal M-O bond but is strongly hydrogen bonded to the auxiliary ligand.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA