Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(21): 9229-9239, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35584208

RESUMO

Artificial control of neuronal activity enables the study of neural circuits and restoration of neural functions. Direct, rapid, and sustained photocontrol of intact neurons could overcome the limitations of established electrical stimulation such as poor selectivity. We have developed fast photoswitchable ligands of glutamate receptors (GluRs) to enable neuronal control in the auditory system. The new photoswitchable ligands induced photocurrents in untransfected neurons upon covalently tethering to endogenous GluRs and activating them reversibly with visible light pulses of a few milliseconds. As a proof of concept of these molecular prostheses, we applied them to the ultrafast synapses of auditory neurons of the cochlea that encode sound and provide auditory input to the brain. This drug-based method afforded the optical stimulation of auditory neurons of adult gerbils at hundreds of hertz without genetic manipulation that would be required for their optogenetic control. This indicates that the new photoswitchable ligands are also applicable to the spatiotemporal control of fast spiking interneurons in the brain.


Assuntos
Cóclea , Optogenética , Cóclea/fisiologia , Ligantes , Neurônios , Optogenética/métodos , Próteses e Implantes
2.
Adv Sci (Weinh) ; 8(14): e2005027, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34018704

RESUMO

The ability to control neural activity is essential for research not only in basic neuroscience, as spatiotemporal control of activity is a fundamental experimental tool, but also in clinical neurology for therapeutic brain interventions. Transcranial-magnetic, ultrasound, and alternating/direct current (AC/DC) stimulation are some available means of spatiotemporal controlled neuromodulation. There is also light-mediated control, such as optogenetics, which has revolutionized neuroscience research, yet its clinical translation is hampered by the need for gene manipulation. As a drug-based light-mediated control, the effect of a photoswitchable muscarinic agonist (Phthalimide-Azo-Iper (PAI)) on a brain network is evaluated in this study. First, the conditions to manipulate M2 muscarinic receptors with light in the experimental setup are determined. Next, physiological synchronous emergent cortical activity consisting of slow oscillations-as in slow wave sleep-is transformed into a higher frequency pattern in the cerebral cortex, both in vitro and in vivo, as a consequence of PAI activation with light. These results open the way to study cholinergic neuromodulation and to control spatiotemporal patterns of activity in different brain states, their transitions, and their links to cognition and behavior. The approach can be applied to different organisms and does not require genetic manipulation, which would make it translational to humans.


Assuntos
Encéfalo/efeitos dos fármacos , Agonistas Muscarínicos/farmacologia , Animais , Furões , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
3.
Org Lett ; 21(10): 3780-3784, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31070376

RESUMO

Photoswitchable neurotransmitters of ionotropic kainate receptors were synthesized by tethering a glutamate moiety to disubstituted C2-bridged azobenzenes, which were prepared through a novel methodology that allows access to diazocines with higher yields and versatility. Because of the singular properties of these photochromes, photoisomerizable compounds were obtained with larger thermal stability for their inert cis isomer than for their biologically activity trans state. This enabled selective neuronal firing upon irradiation without background activity in the dark.


Assuntos
Compostos Azo/química , Ácido Caínico/química , Neurotransmissores/síntese química , Isomerismo , Estrutura Molecular , Neurônios , Neurotransmissores/química , Processos Fotoquímicos
4.
J Am Chem Soc ; 141(18): 7628-7636, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31010281

RESUMO

Light-triggered reversible modulation of physiological functions offers the promise of enabling on-demand spatiotemporally controlled therapeutic interventions. Optogenetics has been successfully implemented in the heart, but significant barriers to its use in the clinic remain, such as the need for genetic transfection. Herein, we present a method to modulate cardiac function with light through a photoswitchable compound and without genetic manipulation. The molecule, named PAI, was designed by introduction of a photoswitch into the molecular structure of an M2 mAChR agonist. In vitro assays revealed that PAI enables light-dependent activation of M2 mAChRs. To validate the method, we show that PAI photoisomers display different cardiac effects in a mammalian animal model, and demonstrate reversible, real-time photocontrol of cardiac function in translucent wildtype tadpoles. PAI can also effectively activate M2 receptors using two-photon excitation with near-infrared light, which overcomes the scattering and low penetration of short-wavelength illumination, and offers new opportunities for intravital imaging and control of cardiac function.


Assuntos
Agonistas Muscarínicos/farmacologia , Sistema Nervoso Parassimpático/efeitos dos fármacos , Receptor Muscarínico M2/agonistas , Sistema Nervoso Simpático/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Frequência Cardíaca/efeitos dos fármacos , Raios Infravermelhos , Simulação de Acoplamento Molecular , Estrutura Molecular , Agonistas Muscarínicos/síntese química , Agonistas Muscarínicos/química , Processos Fotoquímicos , Ratos , Ratos Wistar , Estereoisomerismo , Relação Estrutura-Atividade , Xenopus
5.
Nat Commun ; 10(1): 907, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796228

RESUMO

Manipulation of neuronal activity using two-photon excitation of azobenzene photoswitches with near-infrared light has been recently demonstrated, but their practical use in neuronal tissue to photostimulate individual neurons with three-dimensional precision has been hampered by firstly, the low efficacy and reliability of NIR-induced azobenzene photoisomerization compared to one-photon excitation, and secondly, the short cis state lifetime of the two-photon responsive azo switches. Here we report the rational design based on theoretical calculations and the synthesis of azobenzene photoswitches endowed with both high two-photon absorption cross section and slow thermal back-isomerization. These compounds provide optimized and sustained two-photon neuronal stimulation both in light-scattering brain tissue and in Caenorhabditis elegans nematodes, displaying photoresponse intensities that are comparable to those achieved under one-photon excitation. This finding opens the way to use both genetically targeted and pharmacologically selective azobenzene photoswitches to dissect intact neuronal circuits in three dimensions.


Assuntos
Compostos Azo/química , Caenorhabditis elegans/fisiologia , Raios Infravermelhos , Neurônios/metabolismo , Processos Fotoquímicos , Animais , Canais de Cálcio/metabolismo , Linhagem Celular , Biologia Computacional/métodos , Células HEK293 , Humanos , Técnicas de Patch-Clamp , Fótons
6.
Nat Commun ; 7: 12221, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27436051

RESUMO

Light-regulated drugs allow remotely photoswitching biological activity and enable plausible therapies based on small molecules. However, only freely diffusible photochromic ligands have been shown to work directly in endogenous receptors and methods for covalent attachment depend on genetic manipulation. Here we introduce a chemical strategy to covalently conjugate and photoswitch the activity of endogenous proteins and demonstrate its application to the kainate receptor channel GluK1. The approach is based on photoswitchable ligands containing a short-lived, highly reactive anchoring group that is targeted at the protein of interest by ligand affinity. These targeted covalent photoswitches (TCPs) constitute a new class of light-regulated drugs and act as prosthetic molecules that photocontrol the activity of GluK1-expressing neurons, and restore photoresponses in degenerated retina. The modularity of TCPs enables the application to different ligands and opens the way to new therapeutic opportunities.


Assuntos
Luz , Óptica e Fotônica/métodos , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Animais , Química Click , Feminino , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Isomerismo , Ligantes , Camundongos , Modelos Moleculares , Neurônios/metabolismo , Receptores de Superfície Celular/química , Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA