Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 52016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27213518

RESUMO

Impaired homeostasis of lysosomal Ca(2+) causes lysosome dysfunction and lysosomal storage diseases (LSDs), but the mechanisms by which lysosomes acquire and refill Ca(2+) are not known. We developed a physiological assay to monitor lysosomal Ca(2+) store refilling using specific activators of lysosomal Ca(2+) channels to repeatedly induce lysosomal Ca(2+) release. In contrast to the prevailing view that lysosomal acidification drives Ca(2+) into the lysosome, inhibiting the V-ATPase H(+) pump did not prevent Ca(2+) refilling. Instead, pharmacological depletion or chelation of Endoplasmic Reticulum (ER) Ca(2+) prevented lysosomal Ca(2+) stores from refilling. More specifically, antagonists of ER IP3 receptors (IP3Rs) rapidly and completely blocked Ca(2+) refilling of lysosomes, but not in cells lacking IP3Rs. Furthermore, reducing ER Ca(2+) or blocking IP3Rs caused a dramatic LSD-like lysosome storage phenotype. By closely apposing each other, the ER may serve as a direct and primary source of Ca(2+)for the lysosome.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Lisossomos/metabolismo , Animais , Linhagem Celular , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Força Próton-Motriz
2.
Sleep ; 38(1): 73-84, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25325438

RESUMO

STUDY OBJECTIVES: Dexmedetomidine is used clinically to induce states of sedation that have been described as homologous to nonrapid eye movement (NREM) sleep. A better understanding of the similarities and differences between NREM sleep and dexmedetomidine-induced sedation is essential for efforts to clarify the relationship between these two states. This study tested the hypothesis that dexmedetomidine-induced sedation is homologous to sleep. DESIGN: This study used between-groups and within-groups designs. SETTING: University of Michigan. PARTICIPANTS: Adult male Sprague Dawley rats (n = 40). INTERVENTIONS: Independent variables were administration of dexmedetomidine and saline or Ringer's solution (control). Dependent variables included time spent in states of wakefulness, sleep, and sedation, electroencephalographic (EEG) power, adenosine levels in the substantia innominata (SI), and activation of pCREB and c-Fos in sleep related forebrain regions. MEASUREMENTS AND RESULTS: Dexmedetomidine significantly decreased time spent in wakefulness (-49%), increased duration of sedation (1995%), increased EEG delta power (546%), and eliminated the rapid eye movement (REM) phase of sleep for 16 h. Sedation was followed by a rebound increase in NREM and REM sleep. Systemically administered dexmedetomidine significantly decreased (-39%) SI adenosine levels. Dialysis delivery of dexmedetomidine into SI did not decrease adenosine level. Systemic delivery of dexmedetomidine did not alter c-Fos or pCREB expression in the horizontal diagonal band, or ventrolateral, median, and medial preoptic areas of the hypothalamus. CONCLUSIONS: Dexmedetomidine significantly altered normal sleep phenotypes, and the dexmedetomidine-induced state did not compensate for sleep need. Thus, in the Sprague Dawley rat, dexmedetomidine-induced sedation is characterized by behavioral, electrographic, and immunohistochemical phenotypes that are distinctly different from similar measures obtained during sleep.


Assuntos
Dexmedetomidina/farmacologia , Hipnóticos e Sedativos/farmacologia , Fenótipo , Sono/fisiologia , Adenosina/metabolismo , Animais , Prosencéfalo Basal/efeitos dos fármacos , Prosencéfalo Basal/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dexmedetomidina/administração & dosagem , Diálise , Eletroencefalografia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Sono/efeitos dos fármacos , Sono REM/efeitos dos fármacos , Sono REM/fisiologia , Substância Inominada/efeitos dos fármacos , Substância Inominada/metabolismo , Fatores de Tempo , Vigília/efeitos dos fármacos , Vigília/fisiologia
3.
Nat Med ; 20(10): 1187-92, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25216637

RESUMO

The integrity of the plasma membrane is maintained through an active repair process, especially in skeletal and cardiac muscle cells, in which contraction-induced mechanical damage frequently occurs in vivo. Muscular dystrophies (MDs) are a group of muscle diseases characterized by skeletal muscle wasting and weakness. An important cause of these group of diseases is defective repair of sarcolemmal injuries, which normally requires Ca(2+) sensor proteins and Ca(2+)-dependent delivery of intracellular vesicles to the sites of injury. MCOLN1 (also known as TRPML1, ML1) is an endosomal and lysosomal Ca(2+) channel whose human mutations cause mucolipidosis IV (ML4), a neurodegenerative disease with motor disabilities. Here we report that ML1-null mice develop a primary, early-onset MD independent of neural degeneration. Although the dystrophin-glycoprotein complex and the known membrane repair proteins are expressed normally, membrane resealing was defective in ML1-null muscle fibers and also upon acute and pharmacological inhibition of ML1 channel activity or vesicular Ca(2+) release. Injury facilitated the trafficking and exocytosis of vesicles by upmodulating ML1 channel activity. In the dystrophic mdx mouse model, overexpression of ML1 decreased muscle pathology. Collectively, our data have identified an intracellular Ca(2+) channel that regulates membrane repair in skeletal muscle via Ca(2+)-dependent vesicle exocytosis.


Assuntos
Distrofia Muscular Animal/metabolismo , Sarcolema/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Canais de Cálcio/deficiência , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Membrana Celular/metabolismo , Exocitose , Feminino , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos mdx , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patologia , Sarcolema/patologia , Canais de Potencial de Receptor Transitório/deficiência , Canais de Potencial de Receptor Transitório/genética
4.
Dev Cell ; 26(5): 511-24, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-23993788

RESUMO

Phagocytosis of large extracellular particles such as apoptotic bodies requires delivery of the intracellular endosomal and lysosomal membranes to form plasmalemmal pseudopods. Here, we identified mucolipin TRP channel 1 (TRPML1) as the key lysosomal Ca2+ channel regulating focal exocytosis and phagosome biogenesis. Both particle ingestion and lysosomal exocytosis are inhibited by synthetic TRPML1 blockers and are defective in macrophages isolated from TRPML1 knockout mice. Furthermore, TRPML1 overexpression and TRPML1 agonists facilitate both lysosomal exocytosis and particle uptake. Using time-lapse confocal imaging and direct patch clamping of phagosomal membranes, we found that particle binding induces lysosomal PI(3,5)P2 elevation to trigger TRPML1-mediated lysosomal Ca2+ release specifically at the site of uptake, rapidly delivering TRPML1-resident lysosomal membranes to nascent phagosomes via lysosomal exocytosis. Thus phagocytic ingestion of large particles activates a phosphoinositide- and Ca2+-dependent exocytosis pathway to provide membranes necessary for pseudopod extension, leading to clearance of senescent and apoptotic cells in vivo.


Assuntos
Lisossomos/genética , Fagocitose/genética , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Envelhecimento/genética , Animais , Cálcio/metabolismo , Exocitose/genética , Regulação da Expressão Gênica , Camundongos , Tamanho da Partícula , Fosfatos de Fosfatidilinositol/metabolismo , Canais de Potencial de Receptor Transitório/agonistas , Canais de Potencial de Receptor Transitório/antagonistas & inibidores
5.
J Physiol ; 591(18): 4389-401, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23878375

RESUMO

Endosomal and lysosomal membrane trafficking requires the coordination of multiple signalling events to control cargo sorting and processing, and endosome maturation. The initiation and termination of signalling events in endosomes and lysosomes is not well understood, but several key regulators have been identified, which include small GTPases, phosphoinositides, and Ca2+. Small GTPases act as master regulators and molecular switches in a GTP-dependent manner, initiating signalling cascades to regulate the direction and specificity of endosomal trafficking. Phosphoinositides are membrane-bound lipids that indicate vesicular identities for recruiting specific cytoplasmic proteins to endosomal membranes, thus allowing specificity of membrane fusion, fission, and cargo sorting to occur within and between specific vesicle compartments. In addition, phosphoinositides regulate the function of membrane proteins such as ion channels and transporters in a compartment-specific manner to mediate transport and signalling. Finally, Ca2+, a locally acting second messenger released from intracellular ion channels, may provide precise spatiotemporal regulation of endosomal signalling and trafficking events. Small GTPase signalling can regulate phosphoinositide conversion during endosome maturation, and electrophysiological studies on isolated endosomes have shown that endosomal and lysosomal Ca2+ channels are directly modulated by endosomal lipids. Thus trafficking and maturation of endosomes and lysosomes can be precisely regulated by dynamic changes in GTPases and membrane lipids, as well as Ca2+ signalling. Importantly, impaired phosphoinositide and Ca2+ signalling can cause endosomal and lysosomal trafficking defects at the cellular level, and a spectrum of lysosome storage diseases.


Assuntos
Endossomos/metabolismo , Lisossomos/metabolismo , Transdução de Sinais , Animais , Humanos , Membranas Intracelulares/metabolismo , Fusão de Membrana , Transporte Proteico , Proteínas de Transporte Vesicular/metabolismo
6.
Am J Psychiatry ; 164(3): 450-7, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17329470

RESUMO

OBJECTIVE: The "default mode" has been defined as a baseline condition of brain function and is of interest because its component brain regions are believed to be abnormal in schizophrenia. It was hypothesized that the default mode network would show abnormal activation and connectivity in patients with schizophrenia. METHOD: Patients with schizophrenia (N=21) and healthy comparison subjects (N=22) performed an auditory oddball task during functional magnetic resonance imaging (fMRI). Independent component analysis was used to identify the default mode component. Differences in the spatial and temporal aspects of the default mode network were examined in patients versus comparison subjects. RESULTS: Healthy comparison subjects and patients had significant spatial differences in the default mode network, most notably in the frontal, anterior cingulate, and parahippocampal gyri. In addition, activity in patients in the medial frontal, temporal, and cingulate gyri correlated with severity of positive symptoms. The patients also showed significantly higher frequency fluctuations in the temporal evolution of the default mode. CONCLUSIONS: Schizophrenia is associated with altered temporal frequency and spatial location of the default mode network. The authors hypothesized that this network may be under- or overmodulated by key regions, including the anterior and posterior cingulate cortex. In addition, the altered temporal fluctuations in patients may result from a change in the connectivity of these regions with other brain networks.


Assuntos
Encéfalo/fisiopatologia , Vias Neurais/fisiopatologia , Esquizofrenia/fisiopatologia , Psicologia do Esquizofrênico , Estimulação Acústica , Adulto , Percepção Auditiva/fisiologia , Mapeamento Encefálico , Córtex Cerebral/fisiopatologia , Discriminação Psicológica/fisiologia , Feminino , Lateralidade Funcional/fisiologia , Giro do Cíngulo/fisiopatologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Giro Para-Hipocampal/fisiologia , Mascaramento Perceptivo/fisiologia , Análise de Componente Principal , Esquizofrenia/diagnóstico , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA