Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Entropy (Basel) ; 25(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36981292

RESUMO

Inbreeding depression can reduce the viability of wild populations. Detecting inbreeding depression in the wild is difficult; developing accurate estimates of inbreeding can be time and labor intensive. In this study, we used a two-step modeling procedure to incorporate uncertainty inherent in estimating individual inbreeding coefficients from multilocus genotypes into estimates of inbreeding depression in a population of Weddell seals (Leptonychotes weddellii). The two-step modeling procedure presented in this paper provides a method for estimating the magnitude of a known source of error, which is assumed absent in classic regression models, and incorporating this error into inferences about inbreeding depression. The method is essentially an errors-in-variables regression with non-normal errors in both the dependent and independent variables. These models, therefore, allow for a better evaluation of the uncertainty surrounding the biological importance of inbreeding depression in non-pedigreed wild populations. For this study we genotyped 154 adult female seals from the population in Erebus Bay, Antarctica, at 29 microsatellite loci, 12 of which are novel. We used a statistical evidence approach to inference rather than hypothesis testing because the discovery of both low and high levels of inbreeding are of scientific interest. We found evidence for an absence of inbreeding depression in lifetime reproductive success, adult survival, age at maturity, and the reproductive interval of female seals in this population.

2.
J Anim Ecol ; 89(8): 1927-1940, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32356304

RESUMO

Life history theory predicts allocation of energy to reproduction varies with maternal age, but additional maternal features may be important to the allocation of energy to reproduction. We aimed to characterize age-specific variation in maternal allocation and assess the relationship between maternal allocation and other static and dynamic maternal features. Mass measurements of 531 mothers and pups were used with Bayesian hierarchical models to explain the relationship between diverse maternal attributes and both the proportion of mass allocated by Weddell seal mothers, and the efficiency of mass transfer from mother to pup during lactation as well as the weaning mass of pups. Our results demonstrated that maternal mass was strongly and positively associated with the relative reserves allocated by a mother and a pup's weaning mass but that the efficiency of mass transfer declines with maternal parturition mass. Birthdate was positively associated with proportion mass allocation and pup weaning mass, but mass transfer efficiency was predicted to be highest at the mean birthdate. The relative allocation of maternal reserves declined with maternal age but the efficiency of mass transfer to pups increases, suggestive of selective disappearance of poor-quality mothers. These findings highlight the importance of considering multiple maternal features when assessing variation in maternal allocation.


Assuntos
Lactação , Focas Verdadeiras , Animais , Teorema de Bayes , Feminino , Reprodução , Desmame
3.
Ecol Evol ; 10(24): 13687-13704, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33391673

RESUMO

Wildlife restoration often involves translocation efforts to reintroduce species and supplement small, fragmented populations. We examined the genomic consequences of bighorn sheep (Ovis canadensis) translocations and population isolation to enhance understanding of evolutionary processes that affect population genetics and inform future restoration strategies. We conducted a population genomic analysis of 511 bighorn sheep from 17 areas, including native and reintroduced populations that received 0-10 translocations. Using the Illumina High Density Ovine array, we generated datasets of 6,155 to 33,289 single nucleotide polymorphisms and completed clustering, population tree, and kinship analyses. Our analyses determined that natural gene flow did not occur between most populations, including two pairs of native herds that had past connectivity. We synthesized genomic evidence across analyses to evaluate 24 different translocation events and detected eight successful reintroductions (i.e., lack of signal for recolonization from nearby populations) and five successful augmentations (i.e., reproductive success of translocated individuals) based on genetic similarity with the source populations. A single native population founded six of the reintroduced herds, suggesting that environmental conditions did not need to match for populations to persist following reintroduction. Augmentations consisting of 18-57 animals including males and females succeeded, whereas augmentations of two males did not result in a detectable genetic signature. Our results provide insight on genomic distinctiveness of native and reintroduced herds, information on the relative success of reintroduction and augmentation efforts and their associated attributes, and guidance to enhance genetic contribution of augmentations and reintroductions to aid in bighorn sheep restoration.

4.
Ecol Evol ; 9(15): 8829-8839, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31410283

RESUMO

Migration evolved as a behavior to enhance fitness through exploiting spatially and temporally variable resources and avoiding predation or other threats. Globally, landscape alterations have resulted in declines to migratory populations across taxa. Given the long time periods over which migrations evolved in native systems, it is unlikely that restored populations embody the same migratory complexity that existed before population reductions or regional extirpation.We used GPS location data collected from 209 female bighorn sheep (Ovis canadensis) to characterize population and individual migration patterns along elevation and geographic continuums for 18 populations of bighorn sheep with different management histories (i.e., restored, augmented, and native) across the western United States.Individuals with resident behaviors were present in all management histories. Elevational migrations were the most common population-level migratory behavior. There were notable differences in the degree of individual variation within a population across the three management histories. Relative to native populations, restored and augmented populations had less variation among individuals with respect to elevation and geographic migration distances. Differences in migratory behavior were most pronounced for geographic distances, where the majority of native populations had a range of variation that was 2-4 times greater than restored or augmented populations. Synthesis and applications. Migrations within native populations include a variety of patterns that translocation efforts have not been able to fully recreate within restored and augmented populations. Theoretical and empirical research has highlighted the benefits of migratory diversity in promoting resilience and population stability. Limited migratory diversity may serve as an additional factor limiting demographic performance and range expansion. We suggest preserving native systems with intact migratory portfolios and a more nuanced approach to restoration and augmentation in which source populations are identified based on a suite of criteria that includes matching migratory patterns of source populations with local landscape attributes.

5.
PLoS One ; 13(11): e0207780, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30475861

RESUMO

Respiratory disease caused by Mycoplasma ovipneumoniae and Pasteurellaceae poses a formidable challenge for bighorn sheep (Ovis canadensis) conservation. All-age epizootics can cause 10-90% mortality and are typically followed by multiple years of enzootic disease in lambs that hinders post-epizootic recovery of populations. The relative frequencies at which these epizootics are caused by the introduction of novel pathogens or expression of historic pathogens that have become resident in the populations is unknown. Our primary objectives were to determine how commonly the pathogens associated with respiratory disease are hosted by bighorn sheep populations and assess demographic characteristics of populations with respect to the presence of different pathogens. We sampled 22 bighorn sheep populations across Montana and Wyoming, USA for Mycoplasma ovipneumoniae and Pasteurellaceae and used data from management agencies to characterize the disease history and demographics of these populations. We tested for associations between lamb:ewe ratios and the presence of different respiratory pathogen species. All study populations hosted Pasteurellaceae and 17 (77%) hosted Mycoplasma ovipneumoniae. Average lamb:ewe ratios for individual populations where both Mycoplasma ovipneumoniae and Pasteurellaceae were detected ranged from 0.14 to 0.40. However, average lamb:ewe ratios were higher in populations where Mycoplasma ovipneumoniae was not detected (0.37, 95% CI: 0.27-0.51) than in populations where it was detected (0.25, 95% CI: 0.21-0.30). These findings suggest that respiratory pathogens are commonly hosted by bighorn sheep populations and often reduce recruitment rates; however ecological factors may interact with the pathogens to determine population-level effects. Elucidation of such factors could provide insights for management approaches that alleviate the effects of respiratory pathogens in bighorn sheep. Nevertheless, minimizing the introduction of novel pathogens from domestic sheep and goats remains imperative to bighorn sheep conservation.


Assuntos
Mycoplasma ovipneumoniae/isolamento & purificação , Pasteurellaceae/isolamento & purificação , Sistema Respiratório/microbiologia , Carneiro da Montanha/microbiologia , Animais , Conservação dos Recursos Naturais , Mycoplasma ovipneumoniae/fisiologia , Pasteurellaceae/fisiologia , Probabilidade
6.
Mol Ecol Resour ; 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29856123

RESUMO

Inbreeding and relationship metrics among and within populations are useful measures for genetic management of wild populations, but accuracy and precision of estimates can be influenced by the number of individual genotypes analysed. Biologists are confronted with varied advice regarding the sample size necessary for reliable estimates when using genomic tools. We developed a simulation framework to identify the optimal sample size for three widely used metrics to enable quantification of expected variance and relative bias of estimates and a comparison of results among populations. We applied this approach to analyse empirical genomic data for 30 individuals from each of four different free-ranging Rocky Mountain bighorn sheep (Ovis canadensis canadensis) populations in Montana and Wyoming, USA, through cross-species application of an Ovine array and analysis of approximately 14,000 single nucleotide polymorphisms (SNPs) after filtering. We examined intra- and interpopulation relationships using kinship and identity by state metrics, as well as FST between populations. By evaluating our simulation results, we concluded that a sample size of 25 was adequate for assessing these metrics using the Ovine array to genotype Rocky Mountain bighorn sheep herds. However, we conclude that a universal sample size rule may not be able to sufficiently address the complexities that impact genomic kinship and inbreeding estimates. Thus, we recommend that a pilot study and sample size simulation using R code we developed that includes empirical genotypes from a subset of populations of interest would be an effective approach to ensure rigour in estimating genomic kinship and population differentiation.

7.
J Wildl Dis ; 54(4): 852-858, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29902131

RESUMO

In contrast to broad range expansion through translocations, many mountain goat ( Oreamnos americanus) populations have shown signs of decline. Recent documentation of pneumonia in mountain goats highlights their susceptibility to bacterial pathogens typically associated with bighorn sheep ( Ovis canadensis) epizootics. Respiratory pathogen communities of mountain goats are poorly characterized yet have important implications for management and conservation of both species. We characterized resident pathogen communities across a range of mountain goat populations as an initial step to inform management efforts. Between 2010 and 2017, we sampled 98 individuals within three regions of the Greater Yellowstone Area (GYA), with a smaller sampling effort in southeast Alaska, US. Within the GYA, we detected Mycoplasma ovipneumoniae in two regions and we found at least two Pasteurellaceae species in animals from all regions. Mannheimia haemolytica was the only pathogen that we detected in southeast Alaska. Given the difficult sampling conditions, limited sample size, and imperfect detection, our failure to detect specific pathogens should be interpreted with caution. Nonetheless, respiratory pathogens within the GYA may be an important, yet underappreciated, cause of mountain goat mortality. Moreover, because of the strong niche overlap of bighorn sheep and mountain goats, interspecific transmission is an important concern for managers restoring or introducing mountain ungulates within sympatric ranges.


Assuntos
Bactérias/isolamento & purificação , Infecções Bacterianas/veterinária , Infecções Respiratórias/veterinária , Ruminantes/microbiologia , Animais , Bactérias/classificação , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/microbiologia , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/microbiologia , Estados Unidos/epidemiologia
8.
PLoS One ; 12(7): e0180689, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28708832

RESUMO

Respiratory disease has been a persistent problem for the recovery of bighorn sheep (Ovis canadensis), but has uncertain etiology. The disease has been attributed to several bacterial pathogens including Mycoplasma ovipneumoniae and Pasteurellaceae pathogens belonging to the Mannheimia, Bibersteinia, and Pasteurella genera. We estimated detection probability for these pathogens using protocols with diagnostic tests offered by a fee-for-service laboratory and not offered by a fee-for-service laboratory. We conducted 2861 diagnostic tests on swab samples collected from 476 bighorn sheep captured across Montana and Wyoming to gain inferences regarding detection probability, pathogen prevalence, and the power of different sampling methodologies to detect pathogens in bighorn sheep populations. Estimated detection probability using fee-for-service protocols was less than 0.50 for all Pasteurellaceae and 0.73 for Mycoplasma ovipneumoniae. Non-fee-for-service Pasteurellaceae protocols had higher detection probabilities, but no single protocol increased detection probability of all Pasteurellaceae pathogens to greater than 0.50. At least one protocol resulted in an estimated detection probability of 0.80 for each pathogen except Mannheimia haemolytica, for which the highest detection probability was 0.45. In general, the power to detect Pasteurellaceae pathogens at low prevalence in populations was low unless many animals were sampled or replicate samples were collected per animal. Imperfect detection also resulted in low precision when estimating prevalence for any pathogen. Low and variable detection probabilities for respiratory pathogens using live-sampling protocols may lead to inaccurate conclusions regarding pathogen community dynamics and causes of bighorn sheep respiratory disease epizootics. We recommend that agencies collect multiples samples per animal for Pasteurellaceae detection, and one sample for Mycoplasma ovipneumoniae detection from at least 30 individuals to reliably detect both Pasteurellaceae and Mycoplasma ovipneumoniae at the population-level. Availability of PCR diagnostic tests to wildlife management agencies would improve the ability to reliably detect Pasteurellaceae in bighorn sheep populations.


Assuntos
Infecções Respiratórias/diagnóstico , Doenças dos Ovinos/diagnóstico , Animais , DNA Bacteriano/metabolismo , Mycoplasma ovipneumoniae/genética , Mycoplasma ovipneumoniae/isolamento & purificação , Pasteurellaceae/genética , Pasteurellaceae/isolamento & purificação , Densidade Demográfica , Prevalência , Reação em Cadeia da Polimerase em Tempo Real , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/microbiologia , Ovinos , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/microbiologia , Carneiro da Montanha , Manejo de Espécimes
9.
J Anim Ecol ; 85(6): 1540-1551, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27448960

RESUMO

Age-related changes in maternal reproductive allocation for long-lived species are a key prediction from life-history theory. Theoretical and empirical work suggests that allocation may increase with age due to constraint (increases with experience) or restraint (increases with age in the face of declining residual reproductive value), and may decrease among the oldest aged animals due to senescence in reproductive function. Here, we use a hierarchical modelling approach to investigate the age-related patterns of change in maternal reproductive effort in the Weddell seal, a long-lived marine mammal with a protracted period of maternal care during which mothers allocate a large proportion of body mass while feeding little. We find that maternal allocation increases with age for young mothers during both the pre-natal and post-natal periods. In contrast, older mothers demonstrate a senescent decline in pre-natal allocation but allocate more of their declining resources to their offspring during the post-natal period. We also find strong evidence for the importance of individual effects in reproductive allocation among mothers: some mothers consistently produce heavier (or lighter) pups than expected. Our results indicate that maternal allocation changes over a mother's reproductive life span and that age-specific differences differ in notable ways in pre-natal and post-natal periods.


Assuntos
Peso Corporal , Metabolismo Energético , Focas Verdadeiras/fisiologia , Animais , Animais Recém-Nascidos/fisiologia , Feminino , Lactação , Masculino , Mães , Período Periparto , Fatores de Tempo , Aumento de Peso
10.
Ecol Evol ; 6(7): 1930-41, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27099704

RESUMO

Reproductive synchrony tends to be widespread in diverse species of plants and animals, especially at higher latitudes. However, for long-lived mammals, birth dates for different individuals can vary by weeks within a population. A mother's birth timing can reveal useful information about her reproductive abilities and have important implications for the characteristics and survival of her offspring. Despite this, our current knowledge of factors associated with variation in birth dates is modest. We used long-term data for known-age Weddell seals in Antarctica and a Bayesian hierarchical modeling approach to study how birth dates varied with fixed and temporally varying features of mothers, whether sex allocation varied with birth timing, and annual variation in birth dates. Based on birth dates for 4465 pups born to 1117 mothers aged 4-31, we found that diverse features of mothers were associated with variation in birth dates. Maternal identity was the most important among these. Unlike most studies, which have reported that birth dates occur earlier as mothers age, we found that birth dates progressively occurred earlier in the year in the early part of a mother's reproductive life, reached a minimum at age 16, and then occurred later at later ages. Birth dates were positively related to a mother's age at primiparity and recent reproductive effort. The earliest birth dates were for pups born to prime-age mothers who did not reproduce in the previous year but began reproduction early in life, suggesting that females in the best condition gave birth earlier than others. If so, our finding that male pups tended to be born earlier than females provides support for the Trivers-Willard sex-allocation model. Average birth dates were quite consistent across years, except for 2 years that had notable delays and occurred during the period when massive icebergs were present and disrupted the ecosystem.

11.
Ecology ; 96(2): 479-88, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26240869

RESUMO

Many animal life cycles involve movements among different habitats to fulfill varying resource demands. There are inherent costs associated with such movements, and the decision to leave or stay at a given location ought to be motivated by the benefits associated with potential target habitats. Because movement patterns, especially those associated with reproduction, can have important implications for the success (survival, reproduction) of individual animals, and therefore a population's dynamics, it is important to identify and understand their sources of variation (environmental and individual). Here, using a mark-recapture, multistate modeling approach, we investigated a set of a priori hypotheses regarding sources and patterns of variation in breeding-colony attendance for Weddell seal (Leptonychotes weddellii) females on sabbatical from pup production. For such females, colony attendance might be motivated by predation avoidance and positive social interactions related to reproduction, but some costs, such as reduced foraging opportunities or aggressive interactions with conspecifics, might also exist. We expected these benefits and costs to vary with a female's condition and the environment. Results revealed that the probability of being absent from colonies was higher (1) in years when the extent of local sea ice was larger, (2) for the youngest and oldest individuals, and (3) for females with less reproductive experience. We also found substantial levels of residual individual heterogeneity in these rates. Based on our a priori predictions, we postulate that the decision to attend breeding colonies or not is directly influenced by an individual's physiological condition, as well as by the ice-covered distance to good foraging areas, availability of predator-free haul-out sites, and the level of negative interactions with conspecifics inside colonies. Our results support the idea that in iteroparous species, and colonial animals in particular, seasonal and temporary movements from/to reproductive sites represent flexible behavioral strategies that can play an important role in coping with environmental variability.


Assuntos
Comportamento Animal/fisiologia , Meio Ambiente , Focas Verdadeiras/fisiologia , Animais , Regiões Antárticas , Feminino , Modelos Biológicos , Estações do Ano , Fatores de Tempo
12.
Proc Biol Sci ; 282(1806): 20143137, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25854885

RESUMO

Polynyas are areas of open water surrounded by sea ice and are important sources of primary production in high-latitude marine ecosystems. The magnitude of annual primary production in polynyas is controlled by the amount of exposure to solar radiation and sensitivity to changes in sea-ice extent. The degree of coupling between primary production and production by upper trophic-level consumers in these environments is not well understood, which prevents reliable predictions about population trajectories for species at higher trophic levels under potential future climate scenarios. In this study, we find a strong, positive relationship between annual primary production in an Antarctic polynya and pup production by ice-dependent Weddell seals. The timing of the relationship suggests reproductive effort increases to take advantage of high primary production occurring in the months after the birth pulse. Though the proximate causal mechanism is unknown, our results indicate tight coupling between organisms at disparate trophic levels on a short timescale, deepen our understanding of marine ecosystem processes, and raise interesting questions about why such coupling exists and what implications it has for understanding high-latitude ecosystems.


Assuntos
Ecossistema , Reprodução , Focas Verdadeiras/fisiologia , Animais , Regiões Antárticas , Camada de Gelo , Estações do Ano , Água do Mar
13.
J Anim Ecol ; 83(5): 1158-68, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24673453

RESUMO

Although the quantification of individual heterogeneity in wild populations' vital rates has recently attracted growing interest among ecologists, the investigation of its evolutionary consequences remains limited, mainly because of the difficulties in assessing fitness and heritability from field studies on free-ranging animals. In the presence of individual variability, evaluation of fitness consequences can notably be complicated by the existence of trade-offs among different vital rates. In this study, to further assess the evolutionary significance of previously quantified levels of individual heterogeneity in female Weddell seal (Leptonychotes weddellii Lesson) reproductive rates (Chambert et al. ), we investigated how several life-history characteristics of female offspring were related to their mother's reproductive rate, as well as to other maternal traits (age and experience) and environmental conditions at birth. The probability and age of first reproduction (recruitment) of female offspring was not related to their mother's reproductive rate, suggesting the absence of a maternal trade-off between the number and quality of offspring a female produces. Evidence of a positive, but relatively weak, relationship between the reproductive rates of a mother and her female offspring was found, suggesting some degree of heritability in this trait. Using a simulation approach based on these statistical findings, we showed that substantial differences in the number of grandchildren, produced through female progeny, can be expected among females with different reproductive rates. Despite the presence of substantial stochastic variability, due to environmental fluctuations and other unidentified mechanisms, and in the light of the fact that the metrics obtained do not provide a full measure of real fitness, our results do suggest that the individual reproductive variability found in female Weddell seals could potentially have important fitness consequences.


Assuntos
Evolução Biológica , Reprodução/fisiologia , Focas Verdadeiras/fisiologia , Fatores Etários , Animais , Regiões Antárticas , Feminino , Fertilidade , Aptidão Genética , Modelos Estatísticos , Reprodução/genética , Focas Verdadeiras/genética
14.
Ecol Evol ; 3(7): 2047-60, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23919151

RESUMO

Individual variation in reproductive success is a key feature of evolution, but also has important implications for predicting population responses to variable environments. Although such individual variation in reproductive outcomes has been reported in numerous studies, most analyses to date have not considered whether these realized differences were due to latent individual heterogeneity in reproduction or merely random chance causing different outcomes among like individuals. Furthermore, latent heterogeneity in fitness components might be expressed differently in contrasted environmental conditions, an issue that has only rarely been investigated. Here, we assessed (i) the potential existence of latent individual heterogeneity and (ii) the nature of its expression (fixed vs. variable) in a population of female Weddell seals (Leptonychotes weddellii), using a hierarchical modeling approach on a 30-year mark-recapture data set consisting of 954 individual encounter histories. We found strong support for the existence of latent individual heterogeneity in the population, with "robust" individuals expected to produce twice as many pups as "frail" individuals. Moreover, the expression of individual heterogeneity appeared consistent, with only mild evidence that it might be amplified when environmental conditions are severe. Finally, the explicit modeling of individual heterogeneity allowed us to detect a substantial cost of reproduction that was not evidenced when the heterogeneity was ignored.

16.
Oecologia ; 172(1): 129-40, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23053233

RESUMO

In many species, temporary emigration (TE) is a phenomenon, often indicative of life-history characteristics such as dormancy, skipped reproduction, or partial migration, whereby certain individuals in a population are temporarily unobservable at a particular site. TE may be a flexible condition-dependent strategy that allows individuals to mitigate effects of adverse conditions. Consequently, TE rates ought to be highly variable, but sources of variations are poorly understood for most species. We used data from known-aged female Weddell seals (Leptonychotes weddellii) tagged in Erebus Bay, Antarctica, to investigate sources of variation in TE rates prior to reproduction and to evaluate possible implications for age-specific probability of first reproduction. TE rates were near 1 the year after birth, decreased to an average of 0.15 (SE = 0.01) by age 8, and were similar thereafter. TE rates varied substantially from year-to-year and were lower for seals that attended reproductive colonies the previous year than for seals that did not attend (e.g., ψ(i,age 8)(UU) - ψ(i, age 8)(PU) = 0.22). Recruitment rates were marginally greater for seals that did attend than for seals that did not attend colonies the previous year. For Weddell seals specifically, our results suggest that (1) motivation to attend colonies varied temporally, (2) as seals grew older they had increased motivation to attend even before reproductive maturity, and (3) seals appear to follow various attendance strategies. More broadly, our results support the idea of TE as a variable, condition-dependent strategy, and highlight the utility of TE models for providing population and life-history insights for diverse taxa.


Assuntos
Migração Animal , Reprodução , Focas Verdadeiras/fisiologia , Fatores Etários , Animais , Cruzamento , Feminino , Comportamento Sexual Animal
17.
Proc Biol Sci ; 279(1747): 4532-41, 2012 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-23015628

RESUMO

Extreme events have been suggested to play a disproportionate role in shaping ecological processes, but our understanding of the types of environmental conditions that elicit extreme consequences in natural ecosystems is limited. Here, we investigated the impact of a massive iceberg on the dynamics of a population of Weddell seals. Reproductive rates of females were reduced, but survival appeared unaffected. We also found suggestive evidence for a prolonged shift towards higher variability in reproductive rates. The annual number of females attending colonies showed unusual swings during the iceberg period, a pattern that was apparently the consequence of changes in sea-ice conditions. In contrast to the dramatic effects that were recorded in nearby populations of emperor penguins, our results suggest that this unusual environmental event did not have an extreme impact on the population of seals in the short-term, as they managed to avoid survival costs and were able to rapidly re-achieve high levels of reproduction by the end of the perturbation. Nevertheless, population projections suggest that even this modest impact on reproductive rates could negatively affect the population in the long run if such events were to occur more frequently, as is predicted by models of climate change.


Assuntos
Camada de Gelo , Reprodução/fisiologia , Focas Verdadeiras/fisiologia , Animais , Regiões Antárticas , Mudança Climática , Feminino , Masculino , Densidade Demográfica , Dinâmica Populacional
18.
J Anim Ecol ; 81(1): 162-73, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21939440

RESUMO

1. Life-history theory predicts that those vital rates that make larger contributions to population growth rate ought to be more strongly buffered against environmental variability than are those that are less important. Despite the importance of the theory for predicting demographic responses to changes in the environment, it is not yet known how pervasive demographic buffering is in animal populations because the validity of most existing studies has been called into question because of methodological deficiencies. 2. We tested for demographic buffering in the southern-most breeding mammal population in the world using data collected from 5558 known-age female Weddell seals over 30 years. We first estimated all vital rates simultaneously with mark-recapture analysis and then estimated process variance and covariance in those rates using a hierarchical Bayesian approach. We next calculated the population growth rate's sensitivity to changes in each of the vital rates and tested for evidence of demographic buffering by comparing properly scaled values of sensitivity and process variance in vital rates. 3. We found evidence of positive process covariance between vital rates, which indicates that all vital rates are affected in the same direction by changes in annual environment. Despite the positive correlations, we found strong evidence that demographic buffering occurred through reductions in variation in the vital rates to which population growth rate was most sensitive. Process variation in vital rates was inversely related to sensitivity measures such that variation was greatest in breeding probabilities, intermediate for survival rates of young animals and lowest for survival rates of older animals. 4. Our work contributes to a small but growing set of studies that have used rigorous methods on long-term, detailed data to investigate demographic responses to environmental variation. The information from these studies improves our understanding of life-history evolution in stochastic environments and provides useful information for predicting population responses to future environmental change. Our results for an Antarctic apex predator also provide useful baselines from a marine ecosystem when its top- and middle-trophic levels were not substantially impacted by human activity.


Assuntos
Demografia/métodos , Focas Verdadeiras/fisiologia , Animais , Regiões Antárticas , Teorema de Bayes , Evolução Biológica , Ecossistema , Feminino , Modelos Biológicos , Dinâmica Populacional
19.
Ecol Appl ; 21(1): 3-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21516883

RESUMO

S. Creel et al. reported a negative correlation between fecal progesterone concentrations and elk:wolf ratios in greater Yellowstone elk (Cervus elaphus) herds and interpreted this correlation as evidence that pregnancy rates of elk decreased substantially in the presence of wolves (Canis lupus). Apparently, the hypothesized mechanism is that decreased forage intake reduces body condition and either results in elk failing to conceive during the autumn rut or elk losing the fetus during winter. We tested this hypothesis by comparing age-specific body condition (percentage ingesta-free body fat) and pregnancy rates for northern Yellowstone elk, one of the herds sampled by Creel et al., before (1962-1968) and after (2000-2006) wolf restoration using indices developed and calibrated for Rocky Mountain elk. Mean age-adjusted percentage body fat of female elk was similarly high in both periods (9.0%-0.9% pre-wolf; 8.9%-0.8% post-wolf). Estimated pregnancy rates (proportion of females that were pregnant) were 0.91 pre-wolf and 0.87 post-wolf for 4-9 year-old elk (95% CI on difference = -0.15 to 0.03, P = 0.46) and 0.64 pre-wolf and 0.78 post-wolf for elk > 9 years old (95% CI on difference = -0.01 to 0.27, P = 0.06). Thus, there was little evidence in these data to support strong effects of wolf presence on elk pregnancy. We caution that multiple lines of evidence and/or strong validation should be brought to bear before relying on indirect measures of how predators affect pregnancy rates.


Assuntos
Composição Corporal , Cervos/fisiologia , Comportamento Predatório , Prenhez , Animais , Carnívoros/fisiologia , Feminino , Humanos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA