Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Wildl Dis ; 59(1): 202-206, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791463

RESUMO

Bats host several zoonotic pathogens. Island biogeography and epidemiologic theory predict small remote islands have lower infection diversity. Molecular studies of urine and feces from three species at 10 sites from three islands suggest multiple pathogenic Leptospira, but not coronavirus, paramyxovirus, or Histoplasma, circulate in isolated Pacific Fijian bat populations.


Assuntos
Quirópteros , Coronavirus , Leptospira , Leptospirose , Animais , Leptospirose/veterinária , Filogenia
3.
J Wildl Dis ; 58(4): 836-846, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36136602

RESUMO

Coccidia infections in wild birds rarely cause clinical signs; however, disease and mortality can occur with predisposing environmental and host conditions. The Yellow-eyed Penguin (Megadyptes antipodes) is an endangered species endemic to New Zealand that has seen significant ongoing population decline. The aim of this study was to examine the host-pathogen dynamics of coccidian parasites in two wild populations of Yellow-eyed Penguin: the mainland (South Island) population and the sub-Antarctic (Enderby Island) population. There was weak evidence for a difference in the prevalence of the Eimeria sp. in birds from Enderby Island (76.6%; 36/47; 95% confidence interval [CI] 62.78-86.4%) and the South Island of New Zealand (58.54%; 24/41; 95% CI 43.37-72.24%). The mean pathogen load in penguins on Enderby Island was 9,723 oocysts/g of feces (SE=5831 oocysts/g) and from the South Island of New Zealand was 1,050 oocysts/g (SE=398 oocysts/g). No evidence of an association was found between pathogen load and body weight in either study population. The morphology of the sporulated coccidial oocysts was consistent with a novel species of Eimeria. There was statistically significant variation between the oocysts collected from the two sites in all measurements apart from the oocyst wall thickness. However, the standard technique of assessing linear regressions of the length and width of oocysts from both sampling sites was 0.80, and therefore above the standard R2>0.5 used to indicate variation within a single population of oocysts, suggesting that only a single species of Eimeria was present at both sampling locations. The prevalence and pathogen load of Eimeria sp. was substantially higher than previous reports of coccidial oocysts in Yellow-eyed Penguins and free-living Sphenisciformes globally. This host-parasite relationship deserves further investigation, as the impact of this novel organism on the population remains unclear.


Assuntos
Eimeria , Spheniscidae , Animais , Nova Zelândia/epidemiologia , Regiões Antárticas
4.
Mol Ecol Resour ; 22(7): 2810-2825, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35635119

RESUMO

Species recovery programs are increasingly using genomic data to measure neutral genetic diversity and calculate metrics like relatedness. While these measures can inform conservation management, determining the mechanisms underlying inbreeding depression requires information about functional genes associated with adaptive or maladaptive traits. Toll-like receptors (TLRs) are one family of functional genes, which play a crucial role in recognition of pathogens and activation of the immune system. Previously, these genes have been analysed using species-specific primers and PCR. Here, we leverage an existing short-read reference genome, whole-genome resequencing population data set, and bioinformatic tools to characterize TLR gene diversity in captive and wild tchuriwat'/tuturuatu/shore plover (Thinornis novaeseelandiae), a threatened bird endemic to Aotearoa New Zealand. Our results show that TLR gene diversity in tchuriwat'/tuturuatu is low, and forms two distinct captive and wild genetic clusters. The bioinformatic approach presented here has broad applicability to other threatened species with existing genomic resources in Aotearoa New Zealand and beyond.


Assuntos
Espécies em Perigo de Extinção , Receptores Toll-Like , Animais , Aves/genética , Genoma , Análise de Sequência de DNA , Receptores Toll-Like/genética
5.
Anim Microbiome ; 4(1): 11, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078539

RESUMO

BACKGROUND: The Aotearoa New Zealand takahe (Porphyrio hochstetteri), once thought to be extinct, is a nationally threatened flightless rail under intensive conservation management. While there has been previous research into disease-related microbes in takahe, little is known about the microbes present in the gastrointestinal tract. Given the importance of gut-associated microbes to herbivore nutrition and immunity, knowledge of these communities is likely to be of considerable conservation value. Here we examined the gut microbiotas of 57 takahe at eight separate locations across Aotearoa New Zealand. RESULTS: Faecal samples, taken as a proxy for the hindgut bacterial community, were subjected to 16S rRNA gene amplicon sequencing using Illumina MiSeq. Phylogenetic analysis of > 2200 amplicon sequence variants (ASVs) revealed nine main bacterial phyla (Acidobacteriota, Actinobacteriota, Bacteroidota, Campilobacterota, Firmicutes, Fusobacteriota, Planctomycetota, Proteobacteria, and Verrucomicrobiota) that accounted for the majority of sequence reads. Location was a significant effect (p value < 0.001, 9999 permutations) that accounted for 32% of the observed microbiota variation. One ASV, classified as Lactobacillus aviarius, was present in all samples at an average relative abundance of 17% (SD = 23.20). There was strong evidence (p = 0.002) for a difference in the abundance of the genus Lactobacillus between locations. A common commensal bacterium previously described in takahe, Campylobacter spp., was also detected in most faecal samples. CONCLUSIONS: Location plays a pivotal role in the observed variation among takahe gut bacterial communities and is potentially due to factors such as supplemental feeding and medical treatment experienced by birds housed in captivity at one of the eight sampled sites. These data present a first glimpse of the previously unexplored takahe gut microbiota and provide a baseline for future microbiological studies and conservation efforts.

6.
Int J Parasitol Parasites Wildl ; 13: 160-170, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33117650

RESUMO

In 2013 there was an outbreak of crusting ventral dermatitis among a group of juvenile rowi (Apteryx rowi), a species of the endangered New Zealand kiwi, that were being raised on an off-shore island sanctuary. Biopsies taken at the time found nematodes migrating within the epidermis of affected skin but the specific identity and origin of the organisms was not established, and sporadic cases of similar skin disease continue to occur on the island. On examination of additional sections from the original skin biopsies, adult nematodes and eggs were identified, the histomorphology of which was consistent with Capillaria sensu lato. PCR was performed on DNA extracted from archived formalin-fixed, paraffin-embedded tissue blocks of skin from eight affected rowi, using primers targeting the 18S region of nuclear ribosomal DNA and the COI gene of mitochondrial DNA of capillarid nematodes. The 18S sequences from all rowi samples were identical and matched sequences from members of the genus Eucoleus. In contrast, two distinct capillarid COI sequences were obtained, in one case both from the same rowi skin biopsy. While there were no close matches, both COI sequences also aligned nearest to sequences identified as Eucoleus spp. It is considered unlikely that two different nematode species are involved in the rowi skin lesions and the possible amplification of a COI pseudogene or "numt" is discussed. A species-level identification of the capillarid nematodes causing skin disease in rowi was not obtained, however based on histological evaluation the infections include reproductively-active adult nematodes. This finding indicates the possibility of perpetuation of the skin disease in the absence of the original source, as well as raising potential for the transfer of infection from the island when the juvenile rowi are translocated to their new habitats.

7.
Int J Parasitol Parasites Wildl ; 11: 221-228, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32181127

RESUMO

Sporadic cases of visceral and neural nematode larva migrans have been diagnosed at necropsy in the endangered New Zealand kiwi (Apteryx spp.), but the causative organisms have not yet been definitively identified. From an initial group of five affected kiwi, PCR was performed on DNA extracted from archival formalin-fixed paraffin-embedded tissue sections in which larval nematodes had been histologically identified. Sequencing of positive results from four out of the five kiwi aligned with sequences from Toxocara cati, a nematode parasite whose definitive host is the domestic cat. PCR was then performed on a second group of 12 kiwi that had histologic inflammatory lesions consistent with larva migrans, but variable larval presence. Repeatable positive PCR results were only achieved in one tissue, in which larval organisms were histologically confirmed. This study supports the use of PCR as an alternative or adjunct to the morphological identification of nematode larvae in formalin-fixed histopathological samples, as well as showing that in investigation of larva migrans, PCR has greatest chance of success from sections where nematode larvae are evident histologically. The identification of Toxocara cati from lesions of larva migrans in kiwi reflects an indirect, parasite-mediated effect of an invasive mammalian species on a native species.

8.
J Comp Physiol B ; 188(2): 325-331, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28755031

RESUMO

Vitamin D plays a central role in calcium homeostasis of most vertebrates, and is obtained in different species through diet, dermal synthesis, or a combination of both. The aim of this study was to determine the predominant routes of Vitamin D synthesis in three disparate species, brown kiwi (Apteryx mantelli), tuatara (Sphenodon punctatus), and New Zealand sea lions (Phocarctos hookeri). We surveyed plasma concentrations of 25-hydroxyvitamin D2 and D3, analysed environmental conditions and life history factors, and determined the ability of skin samples to synthesise Vitamin D3 on exposure to ultraviolet-B radiation. There was variation in the plasma/serum 25-hydroxyvitamin D3 concentrations between and within the species studied, with wild kiwi having the lowest concentrations and NZ sea lions the highest. Kiwi skin produced small but measurable amounts of Vitamin D3, while tuatara skin produced Vitamin D3 concentrations higher than that of kiwi. New Zealand sea lion skin produced the highest amount of Vitamin D3 and differed from the other two species in this study in that Vitamin D3 was present in skin before UV-B exposure. The results from this study show that all three species studied retained the ability to use both dietary and dermal sources of Vitamin D, although there was interspecies variation in the magnitude of dermal synthesis. Comparisons between these species show that there are differences in their Vitamin D pathways, but suggest that there are more factors contributing to these pathways than might be expected solely from life history characteristics.


Assuntos
Lagartos/metabolismo , Paleógnatas/metabolismo , Leões-Marinhos/metabolismo , Pele/metabolismo , Vitamina D/metabolismo , Animais , Feminino , Masculino , Especificidade da Espécie
9.
Microb Ecol ; 74(3): 735-744, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28361266

RESUMO

Translocation and isolation of threatened wildlife in new environments may have unforeseen consequences on pathogen transmission and evolution in host populations. Disease threats associated with intensive conservation management of wildlife remain speculative without gaining an understanding of pathogen dynamics in meta-populations and how location attributes may determine pathogen prevalence. We determined the prevalence and population structure of an opportunistic pathogen, Salmonella, in geographically isolated translocated sub-populations of an endangered New Zealand flightless bird, the takahe (Porphyrio hochstetteri). Out of the nine sub-populations tested, Salmonella was only isolated from takahe living on one private island. The apparent prevalence of Salmonella in takahe on the private island was 32% (95% CI 13-57%), with two serotypes, Salmonella Mississippi and Salmonella houtenae 40:gt-, identified. Epidemiological investigation of reservoirs on the private island and another island occupied by takahe identified environmental and reptile sources of S. Mississippi and S. houtenae 40:gt- on the private island. Single nucleotide polymorphism analysis of core genomes revealed low-level diversity among isolates belonging to the same serotype and little differentiation according to host and environmental source. The pattern observed may be representative of transmission between sympatric hosts and environmental sources, the presence of a common unsampled source, and/or evidence of a recent introduction into the ecosystem. This study highlights how genomic epidemiology can be used to ascertain and understand disease dynamics to inform the management of disease threats in endangered wildlife populations.


Assuntos
Doenças das Aves/epidemiologia , Aves , Reservatórios de Doenças/microbiologia , Salmonelose Animal/epidemiologia , Salmonella/genética , Animais , Doenças das Aves/microbiologia , Doenças das Aves/transmissão , Conservação dos Recursos Naturais , Nova Zelândia , Polimorfismo de Nucleotídeo Único , Prevalência , Salmonella/classificação , Salmonella/isolamento & purificação , Salmonelose Animal/microbiologia , Salmonelose Animal/transmissão
10.
J Wildl Dis ; 53(1): 102-110, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27788054

RESUMO

Diphtheritic stomatitis is a seasonal disease that has been recognized as a syndrome in Yellow-eyed Penguin ( Megadyptes antipodes ) chicks in New Zealand for >10 yr. It was present in about 50% of 234 chicks examined since 2002 and is characterized by a thick serocellular exudate in the oral cavity of 1-4-wk-old chicks. The syndrome includes inanition, weight loss, and death in many affected birds. Microscopically, the lesions varied in severity. Most affected chicks had severe, locally extensive, ulcerative stomatitis with large amounts of exudate containing numerous bacteria; a smaller number had mild focal lesions with smaller amounts of exudate and bacteria. Although Corynebacterium amycolatum has been consistently isolated from the oral lesions, it was also present in the oral cavity of 34% of normal adult penguins and their chicks and is not known to possess diphtheritic toxins. A primary viral pathogen was therefore suspected, and intracytoplasmic inclusion bodies were occasionally seen in oral mucosal epithelial cells. No herpesvirus DNA was detected with PCR. Avipoxvirus DNA and an unidentified virus-like agent were detected in some early oral lesions, but could not be confirmed in subsequent testing. Electron microscopy on early affected epithelium with intracytoplasmic inclusion bodies was unrewarding. Our findings raise the possibility that the disease is caused by an unknown primary virus infection followed by secondary Corynebacterium invasion, but this requires confirmation. The means of transmission has not been established but insect vectors are suspected.


Assuntos
Spheniscidae/virologia , Estomatite/veterinária , Animais , Animais Recém-Nascidos , Infecções por Corynebacterium/veterinária , Nova Zelândia , Reação em Cadeia da Polimerase , Spheniscidae/microbiologia
11.
J Wildl Dis ; 52(4): 809-816, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27505039

RESUMO

Penguins are dependent on waterproof plumage for survival. The molt in sub-Antarctic penguin species is a seasonal and catastrophic process during which the animals go through periods of fasting and high levels of stress. Their entire plumage is usually replaced in 3 wk. Attempts at consistent hormonal induction of molt in penguins have been unsuccessful. Four Yellow-eyed Penguins ( Megadyptes antipodes ) were referred for treatment at Wildbase, Massey University, Palmerston North, New Zealand, in late April 2014, following loss of waterproofing, feather breakage, increased body weight, pododermatitis, and damage to caudal feathers from hock sitting. Feather plucking of damaged areas to stimulate feather regrowth was attempted with poor results. Waiting 10-12 mo for a natural molt was not tenable. Catastrophic molt was induced by treatment with 10 g/kg of fresh beef thyroid gland orally once a day. The molt was complete in 18-26 d during which the animals regained full plumage and waterproofing after feather regrowth. The forced molt feathers had abnormal pigmentation but were of sufficient quality to allow release of the birds back to the wild.


Assuntos
Muda , Spheniscidae , Animais , Plumas , Nova Zelândia
12.
Virus Genes ; 52(5): 727-31, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27115421

RESUMO

Circoviruses are circular, non-enveloped, single-stranded DNA viruses around 2000 nucleotides (nt) in length and include the pathogenic species, Porcine circovirus 1 and Beak and feather disease virus, capable of causing significant morbidity and mortality. This group of viruses may be robust to degradation by external environments, and avian circoviruses are known to move between closely related hosts. Using a de novo metagenomic approach, followed by confirmatory PCR, we identify for the first time a circular Rep-encoding single-stranded (CRESS) DNA virus in New Zealand kiwi, Apteryx spp., derived from faecal matter of the rowi kiwi (A. rowi) showing signs of verminous dermatitis. The entire 2085 nt genome was cloned and sequenced and contains both capsid and replicase genes, as well as a conserved 9 nt motif. Phylogenetic analyses place it within Circoviridae, adjacent to other environmental CRESS-DNA viruses, and most closely related to badger circovirus-like virus (Meles meles circovirus-like virus). As the rowi is the most critically endangered kiwi, it is vital to understand the role of rowi kiwi circovirus-like virus as a possible pathogen and also any potential cross-species transmission.


Assuntos
Infecções por Circoviridae/virologia , Circovirus/genética , Genoma Viral/genética , Paleógnatas/virologia , Animais , Proteínas do Capsídeo/genética , Circoviridae/genética , DNA de Cadeia Simples/genética , DNA Viral/genética , Nova Zelândia , Fases de Leitura Aberta/genética , Filogenia
13.
Microb Ecol ; 71(4): 1020-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26707136

RESUMO

Isolation of wildlife into fragmented populations as a consequence of anthropogenic-mediated environmental change may alter host-pathogen relationships. Our understanding of some of the epidemiological features of infectious disease in vulnerable populations can be enhanced by the use of commensal bacteria as a proxy for invasive pathogens in natural ecosystems. The distinctive population structure of a well-described meta-population of a New Zealand endangered flightless bird, the takahe (Porphyrio hochstetteri), provided a unique opportunity to investigate the influence of host isolation on enteric microbial diversity. The genomic epidemiology of a prevalent rail-associated endemic commensal bacterium was explored using core genome and ribosomal multilocus sequence typing (rMLST) of 70 Campylobacter sp. nova 1 isolated from one third of the takahe population resident in multiple locations. While there was evidence of recombination between lineages, bacterial divergence appears to have occurred and multivariate analysis of 52 rMLST genes revealed location-associated differentiation of C. sp. nova 1 sequence types. Our results indicate that fragmentation and anthropogenic manipulation of populations can influence host-microbial relationships, with potential implications for niche adaptation and the evolution of micro-organisms in remote environments. This study provides a novel framework in which to explore the complex genomic epidemiology of micro-organisms in wildlife populations.


Assuntos
Bactérias/genética , Doenças das Aves/microbiologia , Aves/microbiologia , Infecções por Campylobacter/veterinária , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Evolução Biológica , Campylobacter/classificação , Campylobacter/genética , Campylobacter/isolamento & purificação , Infecções por Campylobacter/microbiologia , Espécies em Perigo de Extinção , Genômica , Interações Hospedeiro-Patógeno , Tipagem de Sequências Multilocus , Nova Zelândia , Filogenia , Simbiose
14.
Artigo em Inglês | MEDLINE | ID: mdl-26264523

RESUMO

Colonisation of a host by pathogenic microorganisms is a near constant threat to the health of all vertebrates and most species have evolved an efficient adaptive immune response which produces antibodies following exposure to a specific antigen. The strength of this response can be influenced by many factors including sex and season. Tuatara are exposed to Salmonella through contact with infected skinks and soil; however, no gastrointestinal colonisation of tuatara with Salmonella has been found. Using Western blot and flow cytometry we have demonstrated that tuatara possess antibodies which recognise Salmonella antigens, but many of these antibodies are not specific and are cross-reactive with two closely related and ubiquitous bacteria, Escherichia coli and Citrobacter koseri. Our study describes the anti-Salmonella immune responses in tuatara and will help to inform decisions around maintaining wildlife health, as well as providing important insights into the role and development of adaptive immunity in reptilian species.


Assuntos
Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Lagartos/imunologia , Salmonella/imunologia , Imunidade Adaptativa , Animais , Animais Selvagens/imunologia , Western Blotting , Citrobacter koseri/imunologia , Reações Cruzadas , Escherichia coli/imunologia , Lagartos/microbiologia
15.
Conserv Biol ; 29(5): 1327-36, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25963514

RESUMO

Predicting and preventing outbreaks of infectious disease in endangered wildlife is problematic without an understanding of the biotic and abiotic factors that influence pathogen transmission and the genetic variation of microorganisms within and between these highly modified host communities. We used a common commensal bacterium, Campylobacter spp., in endangered Takahe (Porphyrio hochstetteri) populations to develop a model with which to study pathogen dynamics in isolated wildlife populations connected through ongoing translocations. Takahe are endemic to New Zealand, where their total population is approximately 230 individuals. Takahe were translocated from a single remnant wild population to multiple offshore and mainland reserves. Several fragmented subpopulations are maintained and connected through regular translocations. We tested 118 Takahe from 8 locations for fecal Campylobacter spp. via culture and DNA extraction and used PCR for species assignment. Factors relating to population connectivity and host life history were explored using multivariate analytical methods to determine associations between host variables and bacterial prevalence. The apparent prevalence of Campylobacter spp. in Takahe was 99%, one of the highest reported in avian populations. Variation in prevalence was evident among Campylobacter species identified. C. sp. nova 1 (90%) colonized the majority of Takahe tested. Prevalence of C. jejuni (38%) and C. coli (24%) was different between Takahe subpopulations, and this difference was associated with factors related to population management, captivity, rearing environment, and the presence of agricultural practices in the location in which birds were sampled. Modeling results of Campylobacter spp. in Takahe metapopulations suggest that anthropogenic management of endangered species within altered environments may have unforeseen effects on microbial exposure, carriage, and disease risk. Translocation of wildlife between locations could have unpredictable consequences including the spread of novel microbes between isolated populations.


Assuntos
Doenças das Aves/epidemiologia , Aves , Infecções por Campylobacter/veterinária , Campylobacter/fisiologia , Conservação dos Recursos Naturais , Animais , Doenças das Aves/microbiologia , Campylobacter/classificação , Campylobacter/genética , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/microbiologia , Espécies em Perigo de Extinção , Fezes/microbiologia , Nova Zelândia/epidemiologia , Reação em Cadeia da Polimerase/veterinária , Medição de Risco , Simbiose
16.
J Wildl Dis ; 51(1): 177-86, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25375946

RESUMO

Primary and secondary poisoning of nontarget wildlife with second-generation anticoagulant rodenticides has led to restrictions on their use and to increased use of first-generation anticoagulants, including diphacinone. Although first-generation anticoagulants are less potent and less persistent than second-generation compounds, their use is not without risks to nontarget species. We report the first known mortalities of threatened New Zealand lesser short-tailed bats (Mystacina tuberculata) caused by diphacinone intoxication. The mortalities occurred during a rodent control operation in Pureora Forest Park, New Zealand, during the 2008-09 Austral summer. We observed 115 lesser short-tailed bat deaths between 9 January and 6 February 2009, and it is likely that many deaths were undetected. At necropsy, adult bats showed gross and histologic hemorrhages consistent with coagulopathy, and diphacinone residues were confirmed in 10 of 12 liver samples tested. The cause of mortality of pups was diagnosed as a combination of the effects of diphacinone toxicity, exposure, and starvation. Diphacinone was also detected in two of 11 milk samples extracted from the stomachs of dead pups. Eight adults and 20 pups were moribund when found. Two adults and five pups survived to admission to a veterinary hospital. Three pups responded to treatment and were released at the roost site on 17 March 2009. The route of diphacinone ingestion by adult bats is uncertain. Direct consumption of toxic bait or consumption of poisoned arthropod prey could have occurred. We suggest that the omnivorous diet and terrestrial feeding habits of lesser short-tailed bats make them susceptible to poisoning with the bait matrix and the method of bait delivery used. We recommend the use of alternative vertebrate pesticides, bait matrices, and delivery methods in bat habitat.


Assuntos
Quirópteros , Hemorragia/veterinária , Fenindiona/análogos & derivados , Intoxicação/veterinária , Rodenticidas/toxicidade , Animais , Feminino , Hemorragia/induzido quimicamente , Masculino , Nova Zelândia , Fenindiona/toxicidade
17.
J Wildl Dis ; 50(3): 655-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24807185

RESUMO

A wide variety of Salmonella serotypes occurs within reptilian hosts, but their ecology is poorly understood. We collected cloacal swabs from tuatara (Sphenodon punctatus), fairy prions (Pachyptila turtur), and skinks (Oligosoma spp.) on Stephens Island, New Zealand, to screen for Salmonella. Soil samples were also collected from inside burrows of tuatara and fairy prions and tested for Salmonella. We sampled repeatedly from October 2009 to October 2011. Cloacal swabs were collected from 620 tuatara, and no intestinal shedding of Salmonella was detected. Similarly, no Salmonella was detected in fairy prions. In contrast, we isolated Salmonella from 6.5% of skinks and 8.4% of soil samples. We identified two serovars of Salmonella from 52 isolates, Salmonella Saintpaul and Salmonella Mississippi. Salmonella Mississippi was isolated from skinks only and S. Saintpaul was found in skinks and soil samples. Salmonella persists in this ecosystem with skinks as the main wildlife reservoir, and an environmental reservoir exists in the soil from burrows used by skinks, tuatara, and fairy prions. Salmonella was absent from skinks and the soil in winter, raising the question of bacteria persisting through winter.


Assuntos
Reservatórios de Doenças/veterinária , Ecossistema , Microbiologia Ambiental , Répteis , Salmonelose Animal/microbiologia , Estações do Ano , Animais , Animais Selvagens , Ilhas , Nova Zelândia/epidemiologia , Salmonella/isolamento & purificação , Salmonelose Animal/epidemiologia
18.
Avian Dis ; 58(1): 16-24, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24758108

RESUMO

Aspergillosis, a disease caused by infection with Aspergillus spp., is a common cause of death in birds globally and is an irregular cause of mortality of captive kiwi (Apteryx spp.). Aspergillus spp. are often present in rotting plant material, including the litter and nesting material used for kiwi in captivity. The aim of this study was to survey nocturnal kiwi houses in New Zealand to assess the levels of Aspergillus currently present in leaf litter. Samples were received from 11 nocturnal kiwi houses from throughout New Zealand, with one site supplying multiple samples over time. Aspergillus was isolated and quantified by colony counts from litter samples using selective media and incubation temperatures. Isolates were identified to the species level by amplification and sequencing of ITS regions of the ribosomal. Aspergillus spp. were recovered from almost every sample; however, the levels in most kiwi houses were below 1000 colony-forming units (CFU)/g of wet material. The predominant species was Aspergillus fumigatus, with rare occurrences of Aspergillus niger, Aspergillus nidulans, and Aspergillus parasiticus. Only one site had no detectable Aspergillus. The limit of detection was around 50 CFU/g wet material. One site was repeatedly sampled as it had a high loading of A. fumigatus at the start of the survey and had two recent clinical cases of aspergillosis diagnosed in resident kiwi. Environmental loading at this site with Aspergillus spp. reduced but was not eliminated despite changes of the litter. The key finding of our study is that the background levels of Aspergillus spores in kiwi nocturnal houses in New Zealand are low, but occasional exceptions occur and are associated with the onset of aspergillosis in otherwise healthy birds. The predominant Aspergillus species present in the leaf litter was A. fumigatus, but other species were also present. Further research is needed to confirm the optimal management of leaf litter to minimize Aspergillus spore counts. However, in the interim, our recommendations are that leaf litter should be freshly collected from areas of undisturbed forest areas and spread immediately after collection, without interim storage.


Assuntos
Aspergilose/epidemiologia , Aspergillus/classificação , Aspergillus/genética , Doenças das Aves/epidemiologia , Abrigo para Animais , Paleógnatas , Animais , Aspergilose/microbiologia , Aspergillus/isolamento & purificação , Aspergillus/metabolismo , Doenças das Aves/microbiologia , Contagem de Colônia Microbiana/veterinária , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Dados de Sequência Molecular , Nova Zelândia/epidemiologia , Filogenia , Reação em Cadeia da Polimerase/veterinária , Análise de Sequência de DNA/veterinária
19.
Conserv Biol ; 28(2): 518-28, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24512270

RESUMO

Social network analysis is being increasingly used in epidemiology and disease modeling in humans, domestic animals, and wildlife. We investigated this tool in describing a translocation network (area that allows movement of animals between geographically isolated locations) used for the conservation of an endangered flightless rail, the Takahe (Porphyrio hochstetteri). We collated records of Takahe translocations within New Zealand and used social network principles to describe the connectivity of the translocation network. That is, networks were constructed and analyzed using adjacency matrices with values based on the tie weights between nodes. Five annual network matrices were created using the Takahe data set, each incremental year included records of previous years. Weights of movements between connected locations were assigned by the number of Takahe moved. We calculated the number of nodes (i(total)) and the number of ties (t(total)) between the nodes. To quantify the small-world character of the networks, we compared the real networks to random graphs of the equivalent size, weighting, and node strength. Descriptive analysis of cumulative annual Takahe movement networks involved determination of node-level characteristics, including centrality descriptors of relevance to disease modeling such as weighted measures of in degree (k(i)(in)), out degree (k(i)(out)), and betweenness (B(i)). Key players were assigned according to the highest node measure of k(i)(in), k(i)(out), and B(i) per network. Networks increased in size throughout the time frame considered. The network had some degree small-world characteristics. Nodes with the highest cumulative tie weights connecting them were the captive breeding center, the Murchison Mountains and 2 offshore islands. The key player fluctuated between the captive breeding center and the Murchison Mountains. The cumulative networks identified the captive breeding center every year as the hub of the network until the final network in 2011. Likewise, the wild Murchison Mountains population was consistently the sink of the network. Other nodes, such as the offshore islands and the wildlife hospital, varied in importance over time. Common network descriptors and measures of centrality identified key locations for targeting disease surveillance. The visual representation of movements of animals in a population that this technique provides can aid decision makers when they evaluate translocation proposals or attempt to control a disease outbreak.


Assuntos
Doenças das Aves/epidemiologia , Aves , Conservação dos Recursos Naturais , Surtos de Doenças/veterinária , Animais , Modelos Biológicos , Nova Zelândia , Densidade Demográfica , Vigilância da População
20.
Zoo Biol ; 32(5): 541-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24018906

RESUMO

Avian growth rate patterns represent a trade off between a tissue's functional maturity and its capacity for growth. At the time of hatch, the brown kiwi (Apteryx mantelli) limb has a high level of maturity in order for the chick to be able to kick its way out of the shell and walk and forage independently from an early age. Growth curves of limb segments, bill length and bodyweight are presented for captive-reared, BNZ Operation Nest Egg™ chicks over a period of 3 months from the point of hatch. Some parameters were slightly larger in the females than in males at time of hatch, including the bill length. Growth in bodyweight began to slow earlier in males than in females. Regressions of limb and bill measurements over time showed linear patterns of growth instead of a sigmoidal curve as seen in other birds, probably due to the short period of observation. Bodyweight and bill length were then compared to these morphometrics in a wild population of kiwi. Captive-reared chicks were found to hatch with shorter bills and to increase in bodyweight at a faster rate than the wild birds. Rapid weight gain has been implicated in developmental limb deformities in other precocial and long-legged birds and should be avoided in captive kiwi.


Assuntos
Animais de Zoológico , Tamanho Corporal/fisiologia , Paleógnatas/crescimento & desenvolvimento , Fatores Etários , Animais , Bico/crescimento & desenvolvimento , Pesos e Medidas Corporais , Feminino , Masculino , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA