Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2826: 47-54, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39017884

RESUMO

Immunofluorescence microscopy is a powerful technique using fluorescently labelled antibodies which can be used to visualize proteins in the nucleus. A key advantage of this method is that it can provide insight into the spatial organization and the localization of nuclear proteins, which can provide elucidation of their function. Here, we provide a protocol for immunofluorescence staining in the nucleus, which has successfully been used to visualize histone modifications and nuclear bodies in human and mouse B lymphocytes, using as few as 1 × 104-5 × 104 cells.


Assuntos
Epigênese Genética , Imunofluorescência , Animais , Camundongos , Imunofluorescência/métodos , Humanos , Núcleo Celular/metabolismo , Subpopulações de Linfócitos B/metabolismo , Subpopulações de Linfócitos B/imunologia , Memória Imunológica , Microscopia de Fluorescência/métodos , Histonas/metabolismo , Ativação Linfocitária , Coloração e Rotulagem/métodos
2.
iScience ; 27(5): 109629, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38616920

RESUMO

ATR-X (alpha thalassemia, mental retardation, X-linked) syndrome features genital and testicular abnormalities including atypical genitalia and small testes with few seminiferous tubules. Our mouse model recapitulated the testicular defects when Atrx was deleted in Sertoli cells (ScAtrxKO) which displayed G2/M arrest and apoptosis. Here, we investigated the mechanisms underlying these defects. In control mice, Sertoli cells contain a single novel "GATA4 PML nuclear body (NB)" that contained the transcription factor GATA4, ATRX, DAXX, HP1α, and PH3 and co-localized with the Y chromosome short arm (Yp). ScAtrxKO mice contain single giant GATA4 PML-NBs with frequent DNA double-strand breaks (DSBs) in G2/M-arrested apoptotic Sertoli cells. HP1α and PH3 were absent from giant GATA4 PML-NBs indicating a failure in heterochromatin formation and chromosome condensation. Our data suggest that ATRX protects a Yp region from DNA damage, thereby preventing Sertoli cell death. We discuss Y chromosome damage/decondensation as a mechanism for testicular failure.

3.
Genome Biol ; 24(1): 284, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066546

RESUMO

BACKGROUND: Point mutations in histone variant H3.3 (H3.3K27M, H3.3G34R) and the H3.3-specific ATRX/DAXX chaperone complex are frequent events in pediatric gliomas. These H3.3 point mutations affect many chromatin modifications but the exact oncogenic mechanisms are currently unclear. Histone H3.3 is known to localize to nuclear compartments known as promyelocytic leukemia (PML) nuclear bodies, which are frequently mutated and confirmed as oncogenic drivers in acute promyelocytic leukemia. RESULTS: We find that the pediatric glioma-associated H3.3 point mutations disrupt the formation of PML nuclear bodies and this prevents differentiation down glial lineages. Similar to leukemias driven by PML mutations, H3.3-mutated glioma cells are sensitive to drugs that target PML bodies. We also find that point mutations in IDH1/2-which are common events in adult gliomas and myeloid leukemias-also disrupt the formation of PML bodies. CONCLUSIONS: We identify PML as a contributor to oncogenesis in a subset of gliomas and show that targeting PML bodies is effective in treating these H3.3-mutated pediatric gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Histonas , Adulto , Criança , Humanos , Neoplasias Encefálicas/genética , Glioma/genética , Histonas/genética , Mutação , Corpos Nucleares da Leucemia Promielocítica/genética , Corpos Nucleares da Leucemia Promielocítica/patologia
4.
Nucleic Acids Res ; 50(8): 4500-4514, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35451487

RESUMO

Histone H3.3 is an H3 variant which differs from the canonical H3.1/2 at four residues, including a serine residue at position 31 which is evolutionarily conserved. The H3.3 S31 residue is phosphorylated (H3.3 S31Ph) at heterochromatin regions including telomeres and pericentric repeats. However, the role of H3.3 S31Ph in these regions remains unknown. In this study, we find that H3.3 S31Ph regulates heterochromatin accessibility at telomeres during replication through regulation of H3K9/K36 histone demethylase KDM4B. In mouse embryonic stem (ES) cells, substitution of S31 with an alanine residue (H3.3 A31 -phosphorylation null mutant) results in increased KDM4B activity that removes H3K9me3 from telomeres. In contrast, substitution with a glutamic acid (H3.3 E31, mimics S31 phosphorylation) inhibits KDM4B, leading to increased H3K9me3 and DNA damage at telomeres. H3.3 E31 expression also increases damage at other heterochromatin regions including the pericentric heterochromatin and Y chromosome-specific satellite DNA repeats. We propose that H3.3 S31Ph regulation of KDM4B is required to control heterochromatin accessibility of repetitive DNA and preserve chromatin integrity.


Assuntos
Heterocromatina , Histonas , Animais , Camundongos , Histonas/genética , Histonas/metabolismo , Heterocromatina/genética , Histona Desmetilases/metabolismo , Fosforilação , Montagem e Desmontagem da Cromatina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA