RESUMO
Zn is an indispensable nutrient for crops that usually presents low bioavailability. Different techniques have been proposed to improve the bioavailability of Zn, including the use of nanofertilizers. The objective of the study was to evaluate the applications of drench (D) and foliar (F) ZnO nanoparticles (NZnO) compared to those of ionic Zn2+ (ZnSO4) in lettuce. The plants cv. Great Lakes 407 was produced in pots of 4 L with perlite-peat moss (1:1) under greenhouse conditions. The treatments consisted of NZnO applications that replaced the total Zn provided with a Steiner solution, as follows: Zn2+ (100%D) (control); Zn2+ (50%D+50%F); NZnO (100%D); NZnO (50%D+50%F); NZnO (75%D); NZnO (50%D); NZnO (75%F) and NZnO (50%F). Four applications of Zn were made with a frequency of 15 days. 75 days after transplant (DAP), the fresh and dry biomass, chlorophyll a, b, and ß-carotene, phenolics, flavonoids, antioxidant capacity, vitamin C, glutathione, H2O2, total protein, and enzymatic activity of PAL, CAT, APX, and GPX were evaluated. The mineral concentrations (N, P, K, Ca, Mg, S, Cu, Fe, Mn, Mo, Zn, Ni, and Si) in the leaves and roots of plants were also determined. The results showed that, compared to Zn2+, NZnO promoted increases in biomass (14-52%), chlorophylls (32-69%), and antioxidant compounds such as phenolics, flavonoids, and vitamin C. The activity of enzymes like CAT and APX, as well as the foliar concentration of Ca, Mg, S, Fe, Mn, Zn, and Si increased with NZnO. A better response was found in the plants for most variables with foliar applications of NZnO equivalent to 50-75% of the total Zn2+ applied conventionally. These results demonstrate that total replacement of Zn2+ with NZnO is possible, promoting fertilizer efficiency and the nutraceutical quality of lettuce.
RESUMO
The objective of this review is to present a compilation of the application of various biostimulants in strawberry plants. Strawberry cultivation is of great importance worldwide, and, there is currently no review on this topic in the literature. Plant biostimulation consists of using or applying physical, chemical, or biological stimuli that trigger a response-called induction or elicitation-with a positive effect on crop growth, development, and quality. Biostimulation provides tolerance to biotic and abiotic stress, and more absorption and accumulation of nutrients, favoring the metabolism of the plants. The strawberry is a highly appreciated fruit for its high organoleptic and nutraceutical qualities since it is rich in phenolic compounds, vitamins, and minerals, in addition to being a product with high commercial value. This review aims to present an overview of the information on using different biostimulation techniques in strawberries. The information obtained from publications from 2000-2022 is organized according to the biostimulant's physical, chemical, or biological nature. The biochemical or physiological impact on plant productivity, yield, fruit quality, and postharvest life is described for each class of biostimulant. Information gaps are also pointed out, highlighting the topics in which more significant research effort is necessary.
RESUMO
The objective of this study was to determine the oxidative stress and the physiological and antioxidant responses of coriander plants (Coriandrum sativum) grown for 58 days in soil with zinc oxide nanoparticles (ZnO NPs) and zinc sulfate (ZnSO4) at concentrations of 0, 100, 200, 300, and 400 mg of Zn/kg of soil. The results revealed that all Zn compounds increased the total chlorophyll content (CHLt) by at least 45%, compared to the control group; however, with 400 mg/kg of ZnSO4, chlorophyll accumulation decreased by 34.6%. Zn determination by induction-plasma-coupled atomic emission spectrometry (ICP-AES) showed that Zn absorption in roots and shoots occurred in plants exposed to ZnSO4 at all concentrations, which resulted in high levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Only at 400 mg/kg of ZnSO4, a 78.6% decrease in the MDA levels was observed. According to the results, the ZnSO4 treatments were more effective than the ZnO NPs to increase the antioxidant activity of catalase (CAT), ascorbate peroxidase (APX), and peroxidases (POD). The results corroborate that phytotoxicity was higher in plants subjected to ZnSO4 compared to treatments with ZnO NPs, which suggests that the toxicity was due to Zn accumulation in the tissues by absorbing dissolved Zn++ ions.