Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37759452

RESUMO

Electric fields are now considered a major mechanism of epileptiform activity. However, it is not clear if another electrophysiological phenomenon, burst suppression, utilizes the same mechanism for its bursting phase. Thus, the purpose of this study was to compare the role of ephaptic coupling-the recruitment of neighboring cells via electric fields-in generating bursts in epilepsy and burst suppression. We used local injections of the GABA-antagonist picrotoxin to elicit epileptic activity and a general anesthetic, sevoflurane, to elicit burst suppression in rabbits. Then, we applied an established computational model of pyramidal cells to simulate neuronal activity in a 3-dimensional grid, with an additional parameter to trigger a suppression phase based on extra-cellular calcium dynamics. We discovered that coupling via electric fields was sufficient to produce bursting in scenarios where inhibitory control of excitatory neurons was sufficiently low. Under anesthesia conditions, bursting occurs with lower neuronal recruitment in comparison to seizures. Our model predicts that due to the effect of electric fields, the magnitude of bursts during seizures should be roughly 2-3 times the magnitude of bursts that occur during burst suppression, which is consistent with our in vivo experimental results. The resulting difference in magnitude between bursts during anesthesia and epileptiform bursts reflects the strength of the electric field effect, which suggests that burst suppression and epilepsy share the same ephaptic coupling mechanism.

2.
Cells ; 12(5)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36899947

RESUMO

The functional deficiency of the inhibitory system typically appears during development and can progress to psychiatric disorders or epilepsy, depending on its severity, in later years. It is known that interneurons, the major source of GABAergic inhibition in the cerebral cortex, can make direct connections with arterioles and participate in the regulation of vasomotion. The goal of this study was to mimic the functional deficiency of interneurons through the use of localized microinjections of the GABA antagonist, picrotoxin, in such a concentration that it did not elicit epileptiform neuronal activity. First, we recorded the dynamics of resting-state neuronal activity in response to picrotoxin injections in the somatosensory cortex of an awake rabbit; second, we assessed the altered neuronal and hemodynamic responses to whisker stimulation using BOLD fMRI and electrophysiology recordings; third, we evaluated brain tissue oxygen levels before and after picrotoxin injection. Our results showed that neuronal activity typically increased after picrotoxin administration, the BOLD responses to stimulation became negative, and the oxygen response was nearly abolished. Vasoconstriction during the resting baseline was not observed. These results indicate that picrotoxin provoked imbalanced hemodynamics either due to increased neuronal activity, decreased vascular response, or a combination of both.


Assuntos
Interneurônios , Imageamento por Ressonância Magnética , Animais , Coelhos , Picrotoxina , Neurônios/fisiologia , Oxigênio
4.
Front Mol Neurosci ; 15: 1069496, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504684

RESUMO

The regulation of oxygen in brain tissue is one of the most important fundamental questions in neuroscience and medicine. The brain is a metabolically demanding organ, and its health directly depends on maintaining oxygen concentrations within a relatively narrow range that is both sufficiently high to prevent hypoxia, and low enough to restrict the overproduction of oxygen species. Neurovascular interactions, which are responsible for oxygen delivery, consist of neuronal and glial components. GABAergic interneurons play a particularly important role in neurovascular interactions. The involvement of interneurons extends beyond the perspective of inhibition, which prevents excessive neuronal activity and oxygen consumption, and includes direct modulation of the microvasculature depending upon their sub-type. Namely, nitric oxide synthase-expressing (NOS), vasoactive intestinal peptide-expressing (VIP), and somatostatin-expressing (SST) interneurons have shown modulatory effects on microvessels. VIP interneurons are known to elicit vasodilation, SST interneurons typically cause vasoconstriction, and NOS interneurons have to propensity to induce both effects. Given the importance and heterogeneity of interneurons in regulating local brain tissue oxygen concentrations, we review their differing functions and developmental trajectories. Importantly, VIP and SST interneurons display key developmental milestones in adolescence, while NOS interneurons mature much earlier. The implications of these findings point to different periods of critical development of the interneuron-mediated oxygen regulatory systems. Such that interference with normal maturation processes early in development may effect NOS interneuron neurovascular interactions to a greater degree, while insults later in development may be more targeted toward VIP- and SST-mediated mechanisms of oxygen regulation.

5.
Front Cell Neurosci ; 16: 983298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339824

RESUMO

The dynamic interaction between excitatory and inhibitory activity in the brain is known as excitatory-inhibitory balance (EIB). A significant shift in EIB toward excitation has been observed in numerous pathological states and diseases, such as autism or epilepsy, where interneurons may be dysfunctional. The consequences of this on neurovascular interactions remains to be elucidated. Specifically, it is not known if there is an elevated metabolic consumption of oxygen due to increased excitatory activity. To investigate this, we administered microinjections of picrotoxin, a gamma aminobutyric acid (GABA) antagonist, to the rabbit cortex in the awake state to mimic the functional deficiency of GABAergic interneurons. This caused an observable shift in EIB toward excitation without the induction of seizures. We used chronically implanted electrodes to measure both neuronal activity and brain tissue oxygen concentrations (PO2) simultaneously and in the same location. Using a high-frequency recording rate for PO2, we were able to detect two important phenomena, (1) the shift in EIB led to a change in the power spectra of PO2 fluctuations, such that higher frequencies (8-15 cycles per minute) were suppressed and (2) there were brief periods (dips with a duration of less than 100 ms associated with neuronal bursts) when PO2 dropped below 10 mmHg, which we defined as the threshold for hypoxia. The dips were followed by an overshoot, which indicates either a rapid vascular response or decrease in oxygen consumption. Our results point to the essential role of interneurons in brain tissue oxygen regulation in the resting state.

6.
Antioxidants (Basel) ; 11(4)2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35453473

RESUMO

Neonatal anesthesia, while often essential for surgeries or imaging procedures, is accompanied by significant risks to redox balance in the brain due to the relatively weak antioxidant system in children. Oxidative stress is characterized by concentrations of reactive oxygen species (ROS) that are elevated beyond what can be accommodated by the antioxidant defense system. In neonatal anesthesia, this has been proposed to be a contributing factor to some of the negative consequences (e.g., learning deficits and behavioral abnormalities) that are associated with early anesthetic exposure. In order to assess the relationship between neonatal anesthesia and oxidative stress, we first review the mechanisms of action of common anesthetic agents, the key pathways that produce the majority of ROS, and the main antioxidants. We then explore the possible immediate, short-term, and long-term pathways of neonatal-anesthesia-induced oxidative stress. We review a large body of literature describing oxidative stress to be evident during and immediately following neonatal anesthesia. Moreover, our review suggests that the short-term pathway has a temporally limited effect on oxidative stress, while the long-term pathway can manifest years later due to the altered development of neurons and neurovascular interactions.

7.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884752

RESUMO

Human and animal studies have elucidated the apparent neurodevelopmental effects resulting from neonatal anesthesia. Observations of learning and behavioral deficits in children, who were exposed to anesthesia early in development, have instigated a flurry of studies that have predominantly utilized animal models to further interrogate the mechanisms of neonatal anesthesia-induced neurotoxicity. Specifically, while neonatal anesthesia has demonstrated its propensity to affect multiple cell types in the brain, it has shown to have a particularly detrimental effect on the gamma aminobutyric acid (GABA)ergic system, which contributes to the observed learning and behavioral deficits. The damage to GABAergic neurons, resulting from neonatal anesthesia, seems to involve structure-specific changes in excitatory-inhibitory balance and neurovascular coupling, which manifest following a significant interval after neonatal anesthesia exposure. Thus, to better understand how neonatal anesthesia affects the GABAergic system, we first review the early development of the GABAergic system in various structures that have been the focus of neonatal anesthesia research. This is followed by an explanation that, due to the prolonged developmental curve of the GABAergic system, the entirety of the negative effects of neonatal anesthesia on learning and behavior in children are not immediately evident, but instead take a substantial amount of time (years) to fully develop. In order to address these concerns going forward, we subsequently offer a variety of in vivo methods which can be used to record these delayed effects.


Assuntos
Anestesia Geral/efeitos adversos , Neurônios GABAérgicos/fisiologia , Ácido gama-Aminobutírico/fisiologia , Anestesia Geral/métodos , Animais , Animais Recém-Nascidos , Apoptose , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Transtornos do Comportamento Infantil/etiologia , Pré-Escolar , Fenômenos Eletrofisiológicos , Humanos , Lactente , Recém-Nascido , Interneurônios/fisiologia , Deficiências da Aprendizagem/etiologia , Modelos Neurológicos , Neuroimagem , Síndromes Neurotóxicas/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA