Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39007824

RESUMO

The Biomedical Imaging and Therapy facility of the Canadian Light Source comprises two beamlines, which together cover a wide X-ray energy range from 13 keV up to 140 keV. The beamlines were designed with a focus on synchrotron applications in preclinical imaging and veterinary science as well as microbeam radiation therapy. While these remain a major part of the activities of both beamlines, a number of recent upgrades have enhanced the versatility and performance of the beamlines, particularly for high-resolution microtomography experiments. As a result, the user community has been quickly expanding to include researchers in advanced materials, batteries, fuel cells, agriculture, and environmental studies. This article summarizes the beam properties, describes the endstations together with the detector pool, and presents several application cases of the various X-ray imaging techniques available to users.

2.
J Synchrotron Radiat ; 29(Pt 3): 916-927, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35511025

RESUMO

Tofu is a toolkit for processing large amounts of images and for tomographic reconstruction. Complex image processing tasks are organized as workflows of individual processing steps. The toolkit is able to reconstruct parallel and cone beam as well as tomographic and laminographic geometries. Many pre- and post-processing algorithms needed for high-quality 3D reconstruction are available, e.g. phase retrieval, ring removal and de-noising. Tofu is optimized for stand-alone GPU workstations on which it achieves reconstruction speed comparable with costly CPU clusters. It automatically utilizes all GPUs in the system and generates 3D reconstruction code with minimal number of instructions given the input geometry (parallel/cone beam, tomography/laminography), hence yielding optimal run-time performance. In order to improve accessibility for researchers with no previous knowledge of programming, tofu contains graphical user interfaces for both optimization of 3D reconstruction parameters and batch processing of data with pre-configured workflows for typical computed tomography reconstruction. The toolkit is open source and extensive documentation is available for both end-users and developers. Thanks to the mentioned features, tofu is suitable for both expert users with specialized image processing needs (e.g. when dealing with data from custom-built computed tomography scanners) and for application-specific end-users who just need to reconstruct their data on off-the-shelf hardware.


Assuntos
Alimentos de Soja , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Tomografia , Tomografia Computadorizada por Raios X
3.
Opt Express ; 25(21): 25090-25097, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29041180

RESUMO

Quality of a refractive compound X-ray lens can be limited by imperfections in surfaces of unit lenses and stacking precision. In general case both the lens transmission and optical aberrations define properties of a beam in the lens exit plane; together they can be expressed in terms of the generalized pupil function. In this work we measure this function for a diamond single crystal compound refractive lens. Consequently, we apply the pupil function to evaluate the performance of the examined compound refractive X-ray lens. A number of practically important conclusions can be drawn from such analysis.

4.
PLoS One ; 11(6): e0158306, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27362638

RESUMO

OBJECTIVES: Neoadjuvant chemotherapy is the state-of-the-art treatment in advanced breast cancer. A correct visualization of the post-therapeutic tumor size is of high prognostic relevance. X-ray phase-contrast computed tomography (PC-CT) has been shown to provide improved soft-tissue contrast at a resolution formerly restricted to histopathology, at low doses. This study aimed at assessing ex-vivo the potential use of PC-CT for visualizing the effects of neoadjuvant chemotherapy on breast carcinoma. MATERIALS AND METHODS: The analysis was performed on two ex-vivo formalin-fixed mastectomy samples containing an invasive carcinoma removed from two patients treated with neoadjuvant chemotherapy. Images were matched with corresponding histological slices. The visibility of typical post-therapeutic tissue changes was assessed and compared to results obtained with conventional clinical imaging modalities. RESULTS: PC-CT depicted the different tissue types with an excellent correlation to histopathology. Post-therapeutic tissue changes were correctly visualized and the residual tumor mass could be detected. PC-CT outperformed clinical imaging modalities in the detection of chemotherapy-induced tissue alterations including post-therapeutic tumor size. CONCLUSIONS: PC-CT might become a unique diagnostic tool in the prediction of tumor response to neoadjuvant chemotherapy. PC-CT might be used to assist during histopathological diagnosis, offering a high-resolution and high-contrast virtual histological tool for the accurate delineation of tumor boundaries.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Mama/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Antineoplásicos/uso terapêutico , Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Estudos de Viabilidade , Feminino , Humanos , Terapia Neoadjuvante , Fixação de Tecidos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA