RESUMO
"Despite ART, we detected occasional microglia containing cell-associated HIV RNA and HIV DNA integrated into open regions of the host's genome (â¼0.005%)" should be corrected to: "Despite ART, we detected occasional microglia containing cell-associated HIV RNA and HIV DNA integrated into open regions of the host's genome (â¼0.5%)."
RESUMO
The presence of HIV in sequestered reservoirs is a central impediment to a functional cure, allowing HIV to persist despite life-long antiretroviral therapy (ART), and driving a variety of comorbid conditions. Our understanding of the latent HIV reservoir in the central nervous system is incomplete, because of difficulties in accessing human central nervous system tissues. Microglia contribute to HIV reservoirs, but the molecular phenotype of HIV-infected microglia is poorly understood. We leveraged the unique "Last Gift" rapid autopsy program, in which people with HIV are closely followed until days or even hours before death. Microglial populations were heterogeneous regarding their gene expression profiles but showed similar chromatin accessibility landscapes. Despite ART, we detected occasional microglia containing cell-associated HIV RNA and HIV DNA integrated into open regions of the host's genome (â¼0.005%). Microglia with detectable HIV RNA showed an inflammatory phenotype. These results demonstrate a distinct myeloid cell reservoir in the brains of people with HIV despite suppressive ART. Strategies for curing HIV and neurocognitive impairment will need to consider the myeloid compartment to be successful.
Assuntos
Cromatina , Infecções por HIV , Microglia , Microglia/metabolismo , Microglia/virologia , Humanos , Infecções por HIV/virologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/metabolismo , Cromatina/metabolismo , Cromatina/genética , Masculino , HIV-1/genética , HIV-1/fisiologia , Latência Viral/genética , RNA Viral/genética , RNA Viral/metabolismo , Encéfalo/metabolismo , Encéfalo/virologia , Encéfalo/patologia , Feminino , Adulto , Pessoa de Meia-Idade , Expressão Gênica/genética , Carga ViralRESUMO
The catecholamine neurotransmitter dopamine is classically known for regulation of central nervous system (CNS) functions such as reward, movement, and cognition. Increasing evidence also indicates that dopamine regulates critical functions in peripheral organs and is an important immunoregulatory factor. We have previously shown that dopamine increases NF-κB activity, inflammasome activation, and the production of inflammatory cytokines such as IL-1ß in human macrophages. As myeloid lineage cells are central to the initiation and resolution of acute inflammatory responses, dopamine-mediated dysregulation of these functions could both impair the innate immune response and exacerbate chronic inflammation. However, the exact pathways by which dopamine drives myeloid inflammation are not well defined, and studies in both rodent and human systems indicate that dopamine can impact the production of inflammatory mediators through both D1-like dopamine receptors (DRD1, DRD5) and D2-like dopamine receptors (DRD2, DRD3, and DRD4). Therefore, we hypothesized that dopamine-mediated production of IL-1ß in myeloid cells is regulated by the ratio of different dopamine receptors that are activated. Our data in primary human monocyte-derived macrophages (hMDM) indicate that DRD1 expression is necessary for dopamine-mediated increases in IL-1ß, and that changes in the expression of DRD2 and other dopamine receptors can alter the magnitude of the dopamine-mediated increase in IL-1ß. Mature hMDM have a high D1-like to D2-like receptor ratio, which is different relative to monocytes and peripheral blood mononuclear cells (PBMCs). We further confirm in human microglia cell lines that a high ratio of D1-like to D2-like receptors promotes dopamine-induced increases in IL-1ß gene and protein expression using pharmacological inhibition or overexpression of dopamine receptors. RNA-sequencing of dopamine-treated microglia shows that genes encoding functions in IL-1ß signaling pathways, microglia activation, and neurotransmission increased with dopamine treatment. Finally, using HIV as an example of a chronic inflammatory disease that is substantively worsened by comorbid substance use disorders (SUDs) that impact dopaminergic signaling, we show increased effects of dopamine on inflammasome activation and IL-1ß in the presence of HIV in both human macrophages and microglia. These data suggest that use of addictive substances and dopamine-modulating therapeutics could dysregulate the innate inflammatory response and exacerbate chronic neuroimmunological conditions like HIV. Thus, a detailed understanding of dopamine-mediated changes in inflammation, in particular pathways regulating IL-1ß, will be critical to effectively tailor medication regimens.
RESUMO
Substance use disorders (SUDs) are highly comorbid with HIV infection, necessitating an understanding of the interactive effects of drug exposure and HIV. The relationship between HIV infection and cocaine use disorder is likely bidirectional, with cocaine use directly impacting immune function while HIV infection alters addiction-related behavior. To better characterize the neurobehavioral and immune consequences of HIV infection and cocaine exposure, this study utilizes a humanized mouse model to investigate the outcomes of HIV-1 infection on cocaine-related behaviors in a conditioned place preference (CPP) model, and the interactive effects of cocaine and HIV infection on peripheral and central nervous system inflammation. HIV infection selectively impairs cocaine CPP extinction without effecting reinstatement or cocaine seeking under conflict. Behavioral alterations are accompanied by immune changes in HIV infected mice, including increased prefrontal cortex astrocyte immunoreactivity and brain-region specific effects on microglia number and reactivity. Peripheral immune system changes are observed in human cytokines, including HIV-induced reductions in human TNFα, and cocaine and HIV interactions on GM-CSF levels. Together these data provide new insights into the unique neurobehavioral outcomes of HIV infection and cocaine exposure and how they interact to effect immune responses.
Assuntos
Cocaína , Infecções por HIV , Camundongos , Humanos , Animais , Infecções por HIV/complicações , Extinção Psicológica , Encéfalo , Córtex Pré-FrontalRESUMO
Substance use disorders (SUDs) are highly comorbid with HIV infection, necessitating an understanding of the interactive effects of drug exposure and HIV. The relationship between progressive HIV infection and cocaine use disorder is likely bidirectional, with cocaine use having direct effects on immune function while HIV infection can alter addiction-related behavior. To better characterized the neurobehavioral and immune consequences of HIV infection and cocaine exposure, this study utilized a humanized mouse model to investigate the outcomes of progressive HIV infection on cocaine-related behaviors in a cocaine conditioned place preference (CPP) model, and the interactive effects of cocaine and HIV infection on peripheral and central nervous system inflammation. HIV infection did not impact the formation of a cocaine CPP, but did result in resistance to extinction of the CPP. No effects of HIV on yohimbine-primed reinstatement or cocaine seeking under conflict were observed. These behavioral alterations were accompanied by immune changes in HIV infected mice, including increased prefrontal cortex astrocyte immunoreactivity and brain-region specific effects on microglia number and reactivity. Peripheral immune system changes were observed in both mouse and human markers. Among other targets, this included HIV-induced reductions in mouse IL-1α and G-CSF and human TNFα and cocaine-induced alterations in human TNFα and mouse GM-CSF such that cocaine exposure increases both cytokines only in the absence of HIV infection. Together these data provide new insights into the unique neurobehavioral processes underlying HIV infection and cocaine use disorders, and further how they interact to effect immune responses.
RESUMO
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Assuntos
Sistema Nervoso Central , Dopamina , Receptores Dopaminérgicos , Humanos , Sistema Nervoso Central/imunologia , Dopamina/imunologia , Neurotransmissores/imunologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Receptores Dopaminérgicos/imunologiaRESUMO
Neonates exhibit increased susceptibility to respiratory viral infections, attributed to inflammation at the developing pulmonary air-blood interface. IFN I are antiviral cytokines critical to control viral replication, but also promote inflammation. Previously, we established a neonatal murine influenza virus (IV) model, which demonstrates increased mortality. Here, we sought to determine the role of IFN I in this increased mortality. We found that three-day-old IFNAR-deficient mice are highly protected from IV-induced mortality. In addition, exposure to IFNß 24 h post IV infection accelerated death in WT neonatal animals but did not impact adult mortality. In contrast, IFN IIIs are protective to neonatal mice. IFNß induced an oxidative stress imbalance specifically in primary neonatal IV-infected pulmonary type II epithelial cells (TIIEC), not in adult TIIECs. Moreover, neonates did not have an infection-induced increase in antioxidants, including a key antioxidant, superoxide dismutase 3, as compared to adults. Importantly, antioxidant treatment rescued IV-infected neonatal mice, but had no impact on adult morbidity. We propose that IFN I exacerbate an oxidative stress imbalance in the neonate because of IFN I-induced pulmonary TIIEC ROS production coupled with developmentally regulated, defective antioxidant production in response to IV infection. This age-specific imbalance contributes to mortality after respiratory infections in this vulnerable population.
Assuntos
Interferon Tipo I , Infecções por Orthomyxoviridae , Estresse Oxidativo , Animais , Camundongos , Antioxidantes/metabolismo , Inflamação , Interferon Tipo I/metabolismo , Interferon beta , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/fisiopatologia , Animais Recém-NascidosRESUMO
While the history of neuroimmunology is long, the explicit study of neuroimmune communication, and particularly the role of catecholamines in neuroimmunity, is still emerging. Recent studies have shown that catecholamines, norepinephrine, epinephrine, and dopamine, are central to multiple complex mechanisms regulating immune function. These studies show that catecholamines can be released from both the nervous system and directly from immune cells, mediating both autocrine and paracrine signaling. This commentary highlights the importance of catecholaminergic immunomodulation and discusses new considerations needed to study the role of catecholamines in immune homeostasis to best leverage their contribution to disease processes for the development of new therapeutic approaches.
Assuntos
Dopamina , Norepinefrina , Norepinefrina/fisiologia , Dopamina/fisiologia , Catecolaminas/fisiologia , Epinefrina/fisiologia , NeuroimunomodulaçãoRESUMO
The progressive impairment of immunity to pathogens and vaccines with aging is a significant public health problem as the world population shifts to an increased percentage of older adults (> 65). We have previously demonstrated that cells obtained from older volunteers have delayed and defective induction of type I interferons and T cell and B cell helper cytokines in response to TLR ligands when compared to those from adult subjects. However, the underlying intracellular mechanisms are not well described. Herein, we studied two critical pathways important in the production of type I interferon (IFN), the interferon response factor 7 (pIRF7), and TANK-binding kinase (pTBK-1). We show a decrease in pIRF7 and pTBK-1 in cross-priming dendritic cells (cDC1s), CD4+ T cell priming DCs (cDC2s), and CD14dimCD16+ vascular patrolling monocytes from older adults (n = 11) following stimulation with pathway-specific agonists in comparison with young individuals (n = 11). The decrease in these key antiviral pathway proteins correlates with decreased phagocytosis, suggesting impaired function in Overall, our findings describe molecular mechanisms which explain the innate functional impairment in older adults and thus could inform us of novel approaches to restore these defects.
Assuntos
Antivirais , Imunidade Inata , Humanos , Idoso , Receptores de Reconhecimento de Padrão , Envelhecimento , Transdução de SinaisRESUMO
Monocyte-derived macrophages (MDMs) are key players in tissue homeostasis and diseases regulated by a variety of signaling molecules. Recent literature has highlighted the ability for biogenic amines to regulate macrophage functions, but the mechanisms governing biogenic amine signaling in and around immune cells remain nebulous. In the CNS, biogenic amine transporters are regarded as the master regulators of neurotransmitter signaling. While we and others have shown that macrophages express these transporters, relatively little is known of their function in these cells. To address these knowledge gaps, we investigated the function of norepinephrine transporter (NET) and dopamine transporter (DAT) on human MDMs. We found that both NET and DAT are present and can uptake substrate from the extracellular space at baseline. Not only was DAT expressed in cultured MDMs, but it was also detected in a subset of intestinal macrophages in situ. Surprisingly, we discovered a NET-independent, DAT-mediated immunomodulatory mechanism in response to LPS. LPS induced reverse transport of dopamine through DAT, engaging an autocrine/paracrine signaling loop that regulated the macrophage response. Removing this signaling loop enhanced the proinflammatory response to LPS. Our data introduce a potential role for DAT in the regulation of innate immunity.
Assuntos
Aminas Biogênicas/metabolismo , Transporte Biológico/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Regulação da Expressão Gênica , Macrófagos/metabolismo , RNA/genética , Adulto , Idoso , Proteínas da Membrana Plasmática de Transporte de Dopamina/biossíntese , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Humanos , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Despite widespread use of antiretroviral therapy (ART), HIV remains a major public health issue. Even with effective ART many infected individuals still suffer from the constellation of neurological symptoms now known as neuroHIV. These symptoms can be exacerbated by substance abuse, a common comorbidity among HIV-infected individuals. The mechanism(s) by which different types of drugs impact neuroHIV remains unclear, but all drugs of abuse increase central nervous system (CNS) dopamine and elevated dopamine increases HIV infection and inflammation in human myeloid cells including macrophages and microglia, the primary targets for HIV in the brain. Thus, drug-induced increases in CNS dopamine may be a common mechanism by which distinct addictive substances alter neuroHIV. Myeloid cells are generally infected by HIV strains that use the chemokine receptor CCR5 as a co-receptor, and our data indicate that in a subset of individuals, drug-induced levels of dopamine could interfere with the effectiveness of the CCR5 inhibitor Maraviroc. CCR5 can adopt distinct conformations that differentially regulate the efficiency of HIV entry and subsequent replication and using qPCR, flow cytometry, Western blotting and high content fluorescent imaging, we show that dopamine alters the expression of specific CCR5 conformations of CCR5 on the surface of human macrophages. These changes are not affected by association with lipid rafts, but do correlate with dopamine receptor gene expression levels, specifically higher levels of D1-like dopamine receptors. These data also demonstrate that dopamine increases HIV replication and alters CCR5 conformations in human microglia similarly to macrophages. These data support the importance of dopamine in the development of neuroHIV and indicate that dopamine signaling pathways should be examined as a target in antiretroviral therapies specifically tailored to HIV-infected drug abusers. Further, these studies show the potential immunomodulatory role of dopamine, suggesting changes in this neurotransmitter may also affect the progression of other diseases.
Assuntos
Dopamina/metabolismo , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Maraviroc/uso terapêutico , Células Mieloides/metabolismo , Receptores CCR5/genética , Transtornos Relacionados ao Uso de Substâncias/complicações , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Adolescente , Adulto , Idoso , Terapia Antirretroviral de Alta Atividade , Células Cultivadas , Interações Medicamentosas , Feminino , Expressão Gênica , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Macrófagos/metabolismo , Masculino , Maraviroc/farmacologia , Microglia/citologia , Microglia/metabolismo , Pessoa de Meia-Idade , Conformação Proteica , Receptores CCR5/química , Receptores Dopaminérgicos , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/etiologia , Resultado do Tratamento , Adulto JovemRESUMO
Neurokinin-1 receptor (NK1R) signaling can be immunomodulatory and it can lead to preferential transmigration of CD14+CD16+ monocytes across the blood brain barrier, potentially promoting the development of inflammatory neurological diseases, such as neuroHIV. To evaluate how NK1R signaling alters monocyte biology, RNA sequencing was used to define NK1R-mediated transcriptional changes in different monocyte subsets. The data show that NK1R activation induces a greater number of changes in CD14+CD16+ monocytes (152 differentially expressed genes), than in CD14+CD16- monocytes (36 genes), including increases in the expression of NF-κB and components of the NLRP3 inflammasome pathway. These results suggest that NK1R may alter the inflammatory state of CD14+CD16+ monocytes, influencing the development of neuroinflammation.
Assuntos
Inflamação/imunologia , Monócitos/imunologia , Receptores da Neurocinina-1/imunologia , Transdução de Sinais/imunologia , Adulto , Feminino , Proteínas Ligadas por GPI/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Receptores de IgG/imunologia , Receptores da Neurocinina-1/metabolismo , TranscriptomaRESUMO
Both substance use disorder and HIV infection continue to affect many individuals. Both have untoward effects on the brain, and the two conditions often co-exist. In the brain, macrophages and microglia are infectable by HIV, and these cells are also targets for the effects of drugs of abuse, such as the psychostimulant methamphetamine. To determine the interaction of HIV and methamphetamine, we isolated microglia and brain macrophages from SIV-infected rhesus monkeys that were treated with or without methamphetamine. Cells were subjected to single-cell RNA sequencing and results were analyzed by statistical and bioinformatic analysis. In the animals treated with methamphetamine, a significantly increased proportion of the microglia and/or macrophages were infected by SIV. In addition, gene encoding functions in cell death pathways were increased, and the brain-derived neurotropic factor pathway was inhibited. The gene expression patterns in infected cells did not cluster separately from uninfected cells, but clusters comprised of microglia and/or macrophages from methamphetamine-treated animals differed in neuroinflammatory and metabolic pathways from those comprised of cells from untreated animals. Methamphetamine increases CNS infection by SIV and has adverse effects on both infected and uninfected microglia and brain macrophages, highlighting the dual and interacting harms of HIV infection and drug abuse on the brain.
Assuntos
Macrófagos/metabolismo , Macrófagos/virologia , Redes e Vias Metabólicas/efeitos dos fármacos , Metanfetamina/farmacologia , Microglia/metabolismo , Microglia/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Animais , Biomarcadores , Morte Celular , Biologia Computacional , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Mediadores da Inflamação , Macaca mulatta , Macrófagos/imunologia , Microglia/imunologia , Transtornos Neurocognitivos/etiologia , Transtornos Neurocognitivos/metabolismo , Transtornos Neurocognitivos/psicologia , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Análise de Célula Única , Carga ViralRESUMO
The success of combination antiretroviral therapy (cART) has transformed HIV infection into a chronic condition, resulting in an increase in the number of older, cART-treated adults living with HIV. This has increased the incidence of age-related, non-AIDS comorbidities in this population. One of the most common comorbidities is depression, which is also associated with cognitive impairment and a number of neuropathologies. In older people living with HIV, treating these overlapping disorders is complex, often creating pill burden or adverse drug-drug interactions that can exacerbate these neurologic disorders. Depression, NeuroHIV and many of the neuropsychiatric therapeutics used to treat them impact the dopaminergic system, suggesting that dopaminergic dysfunction may be a common factor in the development of these disorders. Further, changes in dopamine can influence the development of inflammation and the regulation of immune function, which are also implicated in the progression of NeuroHIV and depression. Little is known about the optimal clinical management of drug-drug interactions between cART drugs and antidepressants, particularly in regard to dopamine in older people living with HIV. This review will discuss those interactions, first examining the etiology of NeuroHIV and depression in older adults, then discussing the interrelated effects of dopamine and inflammation on these disorders, and finally reviewing the activity and interactions of cART drugs and antidepressants on each of these factors. Developing better strategies to manage these comorbidities is critical to the health of the aging, HIV-infected population, as the older population may be particularly vulnerable to drug-drug interactions affecting dopamine.
Assuntos
Terapia Combinada/métodos , Dopamina/metabolismo , Infecções por HIV/psicologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Antidepressivos/farmacologia , Comorbidade , Depressão/tratamento farmacológico , Dopamina/fisiologia , Quimioterapia Combinada/métodos , Quimioterapia Combinada/psicologia , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/fisiopatologia , HIV-1/metabolismo , HIV-1/patogenicidade , Humanos , Inflamação/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso/tratamento farmacológicoRESUMO
Human Immunodeficiency Virus (HIV) is a progressive infection that targets the immune system, affecting more than 37 million people around the world. While combinatorial antiretroviral therapy (cART) has lowered mortality rates and improved quality of life in infected individuals, the prevalence of HIV associated neurocognitive disorders is increasing and HIV associated cognitive decline remains prevalent. Recent research has suggested that HIV accessory proteins may be involved in this decline, and several studies have indicated that the HIV protein transactivator of transcription (Tat) can disrupt normal neuronal and glial function. Specifically, data indicate that Tat may directly impact dopaminergic neurotransmission, by modulating the function of the dopamine transporter and specifically damaging dopamine-rich regions of the CNS. HIV infection of the CNS has long been associated with dopaminergic dysfunction, but the mechanisms remain undefined. The specific effect(s) of Tat on dopaminergic neurotransmission may be, at least partially, a mechanism by which HIV infection directly or indirectly induces dopaminergic dysfunction. Therefore, precisely defining the specific effects of Tat on the dopaminergic system will help to elucidate the mechanisms by which HIV infection of the CNS induces neuropsychiatric, neurocognitive and neurological disorders that involve dopaminergic neurotransmission. Further, this will provide a discussion of the experiments needed to further these investigations, and may help to identify or develop new therapeutic approaches for the prevention or treatment of these disorders in HIV-infected individuals.
Assuntos
Transtornos Cognitivos , Dopamina/metabolismo , Infecções por HIV , Doenças do Sistema Nervoso , Transmissão Sináptica/fisiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Animais , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/virologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Humanos , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/virologiaRESUMO
In human immunodeficiency virus-1 (HIV) infected individuals, substance abuse may accelerate the development and/or increase the severity of HIV associated neurocognitive disorders (HAND). It is proposed that CD14+CD16+ monocytes mediate HIV entry into the central nervous system (CNS) and that uninfected and infected CD14+CD16+ monocyte transmigration across the blood brain barrier (BBB) contributes to the establishment and propagation of CNS HIV viral reservoirs and chronic neuroinflammation, important factors in the development of HAND. The effects of substance abuse on the frequency of CD14+CD16+ monocytes in the peripheral circulation and on the entry of these cells into the CNS during HIV neuropathogenesis are not known. PBMC from HIV infected individuals were analyzed by flow cytometry and we demonstrate that the frequency of peripheral blood CD14+CD16+ monocytes in HIV infected substance abusers is increased when compared to those without active substance use. Since drug use elevates extracellular dopamine concentrations in the CNS, we examined the effects of dopamine on CD14+CD16+ monocyte transmigration across our in vitro model of the human BBB. The transmigration of this monocyte subpopulation is increased by dopamine and the dopamine receptor agonist, SKF 38393, implicating D1-like dopamine receptors in the increase in transmigration elicited by this neurotransmitter. Thus, elevated extracellular CNS dopamine may be a novel common mechanism by which active substance use increases uninfected and HIV infected CD14+CD16+ monocyte transmigration across the BBB. The influx of these cells into the CNS may increase viral seeding and neuroinflammation, contributing to the development of HIV associated neurocognitive impairments.
Assuntos
Barreira Hematoencefálica/metabolismo , Dopamina/metabolismo , Infecções por HIV/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Receptores de IgG/metabolismo , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Adulto , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Células Cultivadas , Estudos de Coortes , Dopamina/farmacologia , Feminino , Infecções por HIV/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Transtornos Relacionados ao Uso de Substâncias/patologia , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Migração Transendotelial e Transepitelial/fisiologiaRESUMO
Drug abuse is a major comorbidity of HIV infection and cognitive disorders are often more severe in the drug abusing HIV infected population. CD14+CD16+ monocytes, a mature subpopulation of peripheral blood monocytes, are key mediators of HIV neuropathogenesis. Infected CD14+CD16+ monocyte transmigration across the blood brain barrier mediates HIV entry into the brain and establishes a viral reservoir within the CNS. Despite successful antiretroviral therapy, continued influx of CD14+CD16+ monocytes, both infected and uninfected, contributes to chronic neuroinflammation and the development of HIV associated neurocognitive disorders (HAND). Drug abuse increases extracellular dopamine in the CNS. Once in the brain, CD14+CD16+ monocytes can be exposed to extracellular dopamine due to drug abuse. The direct effects of dopamine on CD14+CD16+ monocytes and their contribution to HIV neuropathogenesis are not known. In this study, we showed that CD14+CD16+ monocytes express mRNA for all five dopamine receptors by qRT-PCR and D1R, D5R and D4R surface protein by flow cytometry. Dopamine and the D1-like dopamine receptor agonist, SKF38393, increased CD14+CD16+ monocyte migration that was characterized as chemokinesis. To determine whether dopamine affected cell motility and adhesion, live cell imaging was used to monitor the accumulation of CD14+CD16+ monocytes on the surface of a tissue culture dish. Dopamine increased the number and the rate at which CD14+CD16+ monocytes in suspension settled to the dish surface. In a spreading assay, dopamine increased the area of CD14+CD16+ monocytes during the early stages of cell adhesion. In addition, adhesion assays showed that the overall total number of adherent CD14+CD16+ monocytes increased in the presence of dopamine. These data suggest that elevated extracellular dopamine in the CNS of HIV infected drug abusers contributes to HIV neuropathogenesis by increasing the accumulation of CD14+CD16+ monocytes in dopamine rich brain regions.
Assuntos
Encéfalo/virologia , Dopamina/metabolismo , Infecções por HIV/complicações , Receptores de Lipopolissacarídeos/análise , Monócitos/virologia , Receptores de IgG/análise , Transtornos Relacionados ao Uso de Substâncias/complicações , Encéfalo/metabolismo , Encéfalo/patologia , Adesão Celular , Movimento Celular , Células Cultivadas , HIV/isolamento & purificação , Infecções por HIV/virologia , Humanos , Monócitos/citologia , Monócitos/metabolismo , Transtornos Relacionados ao Uso de Substâncias/virologiaRESUMO
Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers.
Assuntos
Dopamina/farmacologia , HIV-1/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Internalização do Vírus/efeitos dos fármacos , Amidas/farmacologia , Antagonistas dos Receptores CCR5/farmacologia , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Flupentixol/farmacologia , Expressão Gênica , Inibidores da Fusão de HIV/farmacologia , HIV-1/fisiologia , Humanos , Macrófagos/metabolismo , Macrófagos/virologia , Cultura Primária de Células , Compostos de Amônio Quaternário/farmacologia , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismoRESUMO
HIV infected people are living longer due to the success of combined antiretroviral therapy (cART). However, greater than 40-70% of HIV infected individuals develop HIV associated neurocognitive disorders (HAND) that continues to be a major public health issue. While cART reduces peripheral virus, it does not limit the low level, chronic neuroinflammation that is ongoing during the neuropathogenesis of HIV. Monocyte transmigration across the blood brain barrier (BBB), specifically that of the mature CD14(+)CD16(+) population that is highly susceptible to HIV infection, is critical to the establishment of HAND as these cells bring virus into the brain and mediate the neuroinflammation that persists, even if at low levels, despite antiretroviral therapy. CD14(+)CD16(+) monocytes preferentially migrate into the CNS early during peripheral HIV infection in response to chemotactic signals, including those from CCL2 and CXCL12. Once within the brain, monocytes differentiate into macrophages and elaborate inflammatory mediators. Monocytes/macrophages constitute a viral reservoir within the CNS and these latently infected cells may perpetuate the neuropathogenesis of HIV. This review will discuss mechanisms that mediate transmigration of CD14(+)CD16(+) monocytes across the BBB in the context of HIV infection, the contribution of these cells to the neuropathogenesis of HIV, and potential monocyte/macrophage biomarkers to identify HAND and monitor its progression.