Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37760591

RESUMO

Brain metastases (BMs) represent the most frequent metastatic event in the course of lung cancer patients, occurring in approximately 50% of patients with non-small-cell lung cancer (NSCLC) and in up to 70% in patients with small-cell lung cancer (SCLC). Thus far, many advances have been made in the diagnostic and therapeutic procedures, allowing improvements in the prognosis of these patients. The modern approach relies on the integration of several factors, such as accurate histological and molecular profiling, comprehensive assessment of clinical parameters and precise definition of the extent of intracranial and extracranial disease involvement. The combination of these factors is pivotal to guide the multidisciplinary discussion and to offer the most appropriate treatment to these patients based on a personalized approach. Focal radiotherapy (RT), in all its modalities (radiosurgery (SRS), fractionated stereotactic radiotherapy (SRT), adjuvant stereotactic radiotherapy (aSRT)), is the cornerstone of BM management, either alone or in combination with surgery and systemic therapies. We review the modern therapeutic strategies available to treat lung cancer patients with brain involvement. This includes an accurate review of the different technical solutions which can be exploited to provide a "state-of-art" focal RT and also a detailed description of the systemic agents available as effective alternatives to SRS/SRT when a targetable molecular driver is present. In addition to the validated treatment options, we also discuss the future perspective for focal RT, based on emerging clinical reports (e.g., SRS for patients with many BMs from NSCLC or SRS for BMs from SCLC), together with a presentation of innovative and promising findings in translational research and the combination of novel targeted agents with SRS/SRT.

2.
Cancers (Basel) ; 14(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35326616

RESUMO

Local ablative therapy (LAT), intended as stereotactic ablative radiotherapy or stereotactic radiosurgery, is a well-recognized effective treatment for selected patients with oligometastatic NSCLC. Current clinical evidence supports LAT alone or in combination with systemic therapies. Our retrospective mono-institutional study aims to assess the role of LAT with a peculiar focus on the largest series of non-oncogene addicted oligometastatic NSCLC patients to date. We included in this analysis all patients with the mentioned disease characteristics who underwent LAT for intracranial and/or extracranial metastases between 2011 and 2020. The main endpoints were local control (LC), progression free survival (PFS) and overall survival (OS) in the whole population and after stratification for prognostic factors. We identified a series of 245 consecutive patients (314 lesions), included in this analysis (median age 69 years). In 77% of patients, a single metastasis was treated with LAT and intracranial involvement was the most frequent indication (53% of patients) in our series. The overall response rate (ORR) after LAT was 95%. In case of disease progression, 66 patients underwent new local treatments with curative intent. With a median follow-up of 18 months, median PFS was 13 months (1-year PFS 50%) and median OS was 32 months (1-year OS 75%). The median LC was not reached (1-year LC 89%). The presence of brain metastases was the only factor that negatively affected all clinical endpoints, with a 1-year LC, PFS and OS of 82%, 29% and 62% respectively, compared to 95%, 73% and 91%, respectively, for patients without BMs (p < 0.001 for each endpoint). At the multivariate analysis, mediastinal nodal involvement at baseline (p = 0.049), ECOG PS = 1 (p = 0.011), intracranial disease involvement (p = 0.001), administration of chemotherapy in combination with LAT (p = 0.020), and no delivery of further local treatment for progression or delivery of focal treatment for intracranial progression (p < 0.001) were related to a poorer OS. In our retrospective series, which is to our knowledge the largest to date, LAT showed encouraging results and confirmed the safety and effectiveness of focal treatments in non-oncogene addicted oligometastatic NSCLC patients.

3.
Front Oncol ; 11: 772789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34796118

RESUMO

Brain metastases (BMs) represent the most frequent event during the course of Non-Small Cell Lung Cancer (NSCLC) disease. Recent advancements in the diagnostic and therapeutic procedures result in increased incidence and earlier diagnosis of BMs, with an emerging need to optimize the prognosis of these patients through the adoption of tailored treatment solutions. Nowadays a personalized and multidisciplinary approach should rely on several clinical and molecular factors like patient's performance status, extent and location of brain involvement, extracranial disease control and the presence of any "druggable" molecular target. Radiation therapy (RT), in all its focal (radiosurgery and fractionated stereotactic radiotherapy) or extended (whole brain radiotherapy) declinations, is a cornerstone of BMs management, either alone or combined with surgery and systemic therapies. Our review aims to provide an overview of the many modern RT solutions available for the treatment of BMs from NSCLC in the different clinical scenarios (single lesion, oligo and poly-metastasis, leptomeningeal carcinomatosis). This includes a detailed review of the current standard of care in each setting, with a presentation of the literature data and of the possible technical solutions to offer a "state-of-art" treatment to these patients. In addition to the validated treatment options, we will also discuss the future perspectives on emerging RT technical strategies (e.g., hippocampal avoidance whole brain RT, simultaneous integrated boost, radiosurgery for multiple lesions), and present the innovative and promising findings regarding the combination of novel targeted agents such as tyrosine kinase inhibitors and immune checkpoint inhibitors with brain irradiation.

4.
J Pers Med ; 11(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069862

RESUMO

We investigated the role of the selective avoidance of haematopoietically active pelvic bone marrow (BM), with a targeted intensity-modulated radiotherapy (IMRT) approach, to reduce acute hematologic toxicity (HT) in anal cancer patients undergoing concurrent chemo-radiation. We designed a one-armed two-stage Simon's design study to test the hypothesis that BM-sparing IMRT would improve by 20% the rate of G0-G2 (vs. G3-G4) HT, from 42% of RTOG 0529 historical data to 62% (α = 0.05; ß = 0.20). A minimum of 21/39 (54%) with G0-G2 toxicity represented the threshold for the fulfilment of the criteria to define this approach as 'promising'. We employed 18FDG-PET to identify active BM within the pelvis. Acute HT was assessed via weekly blood counts and scored as per the Common Toxicity Criteria for Adverse Effects version 4.0. From December 2017 to October 2020, we enrolled 39 patients. Maximum observed acute HT comprised 20% rate of ≥G3 leukopenia and 11% rate of ≥G3 thrombocytopenia. Overall, 11 out of 39 treated patients (28%) experienced ≥G3 acute HT. Conversely, in 28 patients (72%) G0-G2 HT events were observed, above the threshold set. Hence, 18FDG-PET-guided BM-sparing IMRT was able to reduce acute HT in this clinical setting.

5.
Cancers (Basel) ; 12(11)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182445

RESUMO

PURPOSE: to investigate the role of selective avoidance of hematopoietically active BM within the pelvis, as defined with 18FDG-PET, employing a targeted IMRT approach, to reduce acute hematologic toxicity (HT) profile in anal cancer patients undergoing concurrent chemo-radiation. METHODS: a one-armed two-stage Simon's design was selected to test the hypothesis that BM-sparing approach would improve by 20% the rate of G0-G2 (vs. G3-G4) HT, from 42% of RTOG 0529 historical data to 62% (α = 0.05 and the ß = 0.20). At the first stage, among 21 enrolled patients, at least 9 should report G0-G2 acute HT to further proceed with the trial. We employed 18FDG-PET to identify active BM within the pelvis. Acute HT was assessed via weekly blood counts and scored as per the Common Toxicity Criteria for Adverse Effects version 4.0. RESULTS: from December 2017 to October 2019, 21 patients were enrolled. Maximum observed acute HT comprised 9% rate of ≥G3 leukopenia and 5% rate of ≥G3 neutropenia and anemia. Overall, only 4 out of 21 treated patients (19%) experienced ≥G3 acute HT. Conversely, 17 patients (81%) experienced G0-G2 events, way above the threshold set by the trial design. CONCLUSION: 18FDG-PET-guided BM-sparing IMRT was able to reduce acute HT in anal cancer patients treated with concomitant chemo-radiation. These results prompted us to conclude the second part of this prospective phase II trial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA