RESUMO
Background: The Infectious Diseases Society of America (IDSA) developed the Core Antimicrobial Stewardship (AS) Curriculum to meet the increasing demand for infectious diseases (ID) providers with AS expertise. Notable diversity in implementation approaches has been observed among ID fellowship programs using the curriculum. We sought to describe individual approaches and develop a curriculum implementation roadmap. Methods: We surveyed ID fellowship programs that had previously implemented the IDSA Core AS curriculum. The survey included questions regarding program characteristics, curriculum participants and presentation format, resources and barriers, and implementation strategies. Commonly reported program features were summarized in the context of the self-reported implementation strategies. Implementation guides were developed based on the most common characteristics observed. Results: Of 159 programs that had purchased the curriculum, 37 responded, and 34 (21%) were included in the analysis. The curriculum was primarily taught by AS physicians (85%) and AS pharmacists (47%). The most common conference structure was a longitudinal conference series (32%), and eLearning was the most common presentation format. Limited AS faculty time (76%) and limited first-year fellow availability (62%) were frequently reported as barriers, and dedicated AS curricular time was a resource available to most programs (67%); implementation guides were created for these 3 program features. Conclusions: Programs reported a variety of implementation barriers and resources, with several common themes emerging, allowing for the development of tailored curriculum planners for 3 commonly observed program characteristics. This work will equip fellowship programs with curriculum implementation strategies and guide future enhancements of the IDSA Core and Advanced AS curricula.
RESUMO
We describe our approach to addressing a nation-wide supply issue for blood culture bottles. Aerobic blood culture bottles received from our distributor July 1-15, 2024 was <1% of typical usage. Through education and ordering restrictions blood culture designed to minimize risk, orders were reduced by 49% over a one-week period.
RESUMO
Central nervous system (CNS) infections carry a substantial burden of morbidity and mortality worldwide, and accurate and timely diagnosis is required to optimize management. Metagenomic next-generation sequencing (mNGS) has proven to be a valuable tool in detecting pathogens in patients with suspected CNS infection. By sequencing microbial nucleic acids present in a patient's cerebrospinal fluid, brain tissue, or samples collected outside of the CNS, such as plasma, mNGS can detect a wide range of pathogens, including rare, unexpected, and/or fastidious organisms. Furthermore, its target-agnostic approach allows for the identification of both known and novel pathogens. This is particularly useful in cases where conventional diagnostic methods fail to provide an answer. In addition, mNGS can detect multiple microorganisms simultaneously, which is crucial in cases of mixed infections without a clear predominant pathogen. Overall, clinical mNGS testing can help expedite the diagnostic process for CNS infections, guide appropriate management decisions, and ultimately improve clinical outcomes. However, there are key challenges surrounding its use that need to be considered to fully leverage its clinical impact. For example, only a few specialized laboratories offer clinical mNGS due to the complexity of both the laboratory methods and analysis pipelines. Clinicians interpreting mNGS results must be aware of both false negatives-as mNGS is a direct detection modality and requires a sufficient amount of microbial nucleic acid to be present in the sample tested-and false positives-as mNGS detects environmental microbes and their nucleic acids, despite best practices to minimize contamination. Additionally, current costs and turnaround times limit broader implementation of clinical mNGS. Finally, there is uncertainty regarding the best practices for clinical utilization of mNGS, and further work is needed to define the optimal patient population(s), syndrome(s), and time of testing to implement clinical mNGS.
Assuntos
Infecções do Sistema Nervoso Central , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Infecções do Sistema Nervoso Central/diagnóstico , Infecções do Sistema Nervoso Central/microbiologia , Infecções do Sistema Nervoso Central/líquido cefalorraquidiano , Metagenoma , Técnicas de Diagnóstico Molecular/métodosRESUMO
Next-generation sequencing (NGS)-based assays are primarily available from reference laboratories for diagnostic use. These tests can provide helpful diagnostic data but also can be overused by ordering providers not fully understanding their limitations. At present, there are few best practice guidelines for use. NGS-based assays can carry a high cost to institutions and individual patients, requiring thoughtful use through application of diagnostic stewardship principles. This article provides an overview of diagnostic stewardship approaches as applied to these assays, focusing on principles of collaboration, differential diagnosis formation, and seeking the best patient, syndrome, sample, timing, and test for improved patient care.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Técnicas MicrobiológicasRESUMO
BACKGROUND: Congenital cytomegalovirus (CMV) infection is a significant cause of childhood hearing loss and developmental delay. Congenital CMV screening was implemented at two large hospital-affiliated laboratories using the FDA-approved Alethia CMV Assay Test System. In July 2022, an increase in suspected false-positive results was noted, leading to implementation of prospective quality management strategies. METHODS: The Alethia assay was performed per manufacturer-provided instructions on saliva swab specimens. After discovery of possible elevated false-positive rates, all positive results were confirmed by repeat Alethia testing on the same specimen, orthogonal polymerase chain reaction (PCR) on the same specimen, and/or clinical adjudication. Additionally, root cause analyses were conducted to pinpoint the source of false-positive results. RESULTS: At Cleveland Clinic (CCF), 696 saliva specimens were tested after initiation of the prospective quality management strategy, of which 36 (5.2%) were positive for CMV. Five of 36 (13.9%) were confirmed CMV positive by repeat Alethia testing and orthogonal PCR. Vanderbilt Medical Center (VUMC) tested 145 specimens, of which 11 (7.6%) were positive. Two of 11 (18.2%) confirmed as positive by orthogonal PCR or clinical adjudication. The remaining specimens (31 from CCF and 9 from VUMC) were negative for CMV by repeat Alethia and/or orthogonal PCR testing. DISCUSSION: These findings suggest a false positive rate of 4.5-6.2%, higher than the 0.2% reported for this assay in FDA claims. Laboratories using Alethia CMV may consider prospective quality management to evaluate all positive results. False-positive results can lead to unnecessary follow-up care and testing, and decreased confidence in laboratory testing.
Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Recém-Nascido , Humanos , Citomegalovirus/genética , Saliva , Estudos Prospectivos , Triagem Neonatal/métodos , DNA Viral/análiseRESUMO
Encephalitis is a devastating neurologic disease often complicated by prolonged neurologic deficits. Best practices for the management of adult patients include universal testing for a core group of etiologies, including herpes simplex virus (HSV)-1, varicella zoster virus (VZV), enteroviruses, West Nile virus, and anti-N-methyl-D-aspartate receptor (anti-NMDAR) antibody encephalitis. Empiric acyclovir therapy should be started at presentation and in selected cases continued until a second HSV-1 polymerase chain reaction test is negative. Acyclovir dose can be increased for VZV encephalitis. Supportive care is necessary for other viral etiologies. Patients in whom no cause for encephalitis is identified represent a particular challenge. Management includes repeat brain magnetic resonance imaging, imaging for occult malignancy, and empiric immunomodulatory treatment for autoimmune conditions. Next-generation sequencing (NGS) or brain biopsy should be considered. The rapid pace of discovery regarding autoimmune encephalitis and the development of advanced molecular tests such as NGS have improved diagnosis and outcomes. Research priorities include development of novel therapeutics.
Assuntos
Encefalite por Herpes Simples , Encefalite , Herpesvirus Humano 1 , Doenças do Sistema Nervoso , Adulto , Humanos , Aciclovir/uso terapêutico , Herpesvirus Humano 3 , Encefalite/diagnóstico , Encefalite/tratamento farmacológico , Encéfalo/diagnóstico por imagem , Encefalite por Herpes Simples/diagnóstico , Encefalite por Herpes Simples/tratamento farmacológicoRESUMO
Increasing parechovirus (PeV) infections prompted a Centers for Disease Control and Prevention Health Advisory in July 2022. We retrospectively assessed national PeV trends in cerebrospinal fluid and observed unexpected viral dynamics from 2020 to 2022 with regional variance. These findings may be due to mitigation strategies aimed at severe acute respiratory syndrome coronavirus 2. PeV testing can benefit ill patients, particularly children.
RESUMO
The field of clinical metagenomics for infectious disease diagnostics has advanced to combining questions of technical methodologies with best-use practices due to lowering barriers of implementation. This commentary identifies challenges facing further development of the field and proposes methods for advancement by highlighting a recent prospective pilot study evaluating a targeted metagenomic approach for infectious endocarditis. This commentary introduces the concept of operational value as a method for standardizing results generated by differing clinical metagenomic approaches. Operational value includes assessments of result quality, utility, and cost through incorporating methodological aspects of metagenomics as applied to various infectious syndromes, patient populations, and specimen types. Focus is placed on standardizing outcome-based metrics using an operational value matrix. As ambitions of clinical metagenomics are increasingly realized, new models of study design and collaboration could promote progress toward routine use and positive benefits for patients with infectious diseases.
Assuntos
Doenças Transmissíveis , Metagenômica , Humanos , Metagenômica/métodos , Projetos Piloto , Sequenciamento de Nucleotídeos em Larga Escala/métodos , MetagenomaRESUMO
BACKGROUND: Prior observation has shown differences in COVID-19 hospitalization risk between SARS-CoV-2 variants, but limited information describes hospitalization outcomes. METHODS: Inpatients with COVID-19 at 5 hospitals in the eastern United States were included if they had hypoxia, tachypnea, tachycardia, or fever, and SARS-CoV-2 variant data, determined from whole-genome sequencing or local surveillance inference. Analyses were stratified by history of SARS-CoV-2 vaccination or infection. The average effect of SARS-CoV-2 variant on 28-day risk of severe disease, defined by advanced respiratory support needs, or death was evaluated using models weighted on propensity scores derived from baseline clinical features. RESULTS: Severe disease or death within 28 days occurred for 977 (29%) of 3369 unvaccinated patients and 269 (22%) of 1230 patients with history of vaccination or prior SARS-CoV-2 infection. Among unvaccinated patients, the relative risk of severe disease or death for Delta variant compared with ancestral lineages was 1.30 (95% confidence interval [CI]: 1.11-1.49). Compared with Delta, the risk for Omicron patients was .72 (95% CI: .59-.88) and compared with ancestral lineages was .94 (.78-1.1). Among Omicron and Delta infections, patients with history of vaccination or prior SARS-CoV-2 infection had half the risk of severe disease or death (adjusted hazard ratio: .40; 95% CI: .30-.54), but no significant outcome difference by variant. CONCLUSIONS: Although risk of severe disease or death for unvaccinated inpatients with Omicron was lower than with Delta, it was similar to ancestral lineages. Severe outcomes were less common in vaccinated inpatients, with no difference between Delta and Omicron infections.
Assuntos
COVID-19 , Pacientes Internados , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Vacinas contra COVID-19RESUMO
BACKGROUNDIncreased SARS-CoV-2 reinfection rates have been reported recently, with some locations basing reinfection on a second positive PCR test at least 90 days after initial infection. In this study, we used Johns Hopkins SARS-CoV-2 genomic surveillance data to evaluate the frequency of sequencing-validated, confirmed, and inferred reinfections between March 2020 and July 2022.METHODSPatients who had 2 or more positive SARS-CoV-2 tests in our system, with samples sequenced as a part of our surveillance efforts, were identified as the cohort for our study. SARS-CoV-2 genomes of patients' initial and later samples were compared.RESULTSA total of 755 patients (920 samples) had a positive test at least 90 days after the initial test, with a median time between tests of 377 days. Sequencing was attempted on 231 samples and was successful in 127. Rates of successful sequencing spiked during the Omicron surge; there was a higher median number of days from initial infection in these cases compared with those with failed sequences. A total of 122 (98%) patients showed evidence of reinfection; 45 of these patients had sequence-validated reinfection and 77 had inferred reinfections (later sequencing showed a clade that was not circulating when the patient was initially infected). Of the 45 patients with sequence-validated reinfections, 43 (96%) had reinfections that were caused by the Omicron variant, 41 (91%) were symptomatic, 32 (71%) were vaccinated prior to the second infection, 6 (13%) were immunosuppressed, and only 2 (4%) were hospitalized.CONCLUSIONSequence-validated reinfections increased with the Omicron surge but were generally associated with mild infections.FUNDINGFunding was provided by the Johns Hopkins Center of Excellence in Influenza Research and Surveillance (HHSN272201400007C), CDC (75D30121C11061), Johns Hopkins University President's Fund Research Response, Johns Hopkins Department of Pathology, and the Maryland Department of Health.
Assuntos
COVID-19 , Reinfecção , Humanos , SARS-CoV-2/genética , Genoma ViralRESUMO
The last decade has seen an explosion of advanced assays for the diagnosis of infectious diseases, yet evidence-based recommendations to inform their optimal use in the care of transplant recipients are lacking. A consensus conference sponsored by the American Society of Transplantation (AST) was convened on December 7, 2021, to define the utility of novel infectious disease diagnostics in organ transplant recipients. The conference represented a collaborative effort by experts in transplant infectious diseases, diagnostic stewardship, and clinical microbiology from centers across North America to evaluate current uses, unmet needs, and future directions for assays in 5 categories including (1) multiplex molecular assays, (2) rapid antimicrobial resistance detection methods, (3) pathogen-specific T-cell reactivity assays, (4) next-generation sequencing assays, and (5) mass spectrometry-based assays. Participants reviewed and appraised available literature, determined assay advantages and limitations, developed best practice guidance largely based on expert opinion for clinical use, and identified areas of future investigation in the setting of transplantation. In addition, attendees emphasized the need for well-designed studies to generate high-quality evidence needed to guide care, identified regulatory and financial barriers, and discussed the role of regulatory agencies in facilitating research and implementation of these assays. Findings and consensus statements are presented.
Assuntos
Transplante de Órgãos , Transplantes , Humanos , Transplantados , Consenso , Transplante de Órgãos/efeitos adversos , América do NorteRESUMO
Profoundly B-cell-depleted patients can have prolonged severe acute respiratory syndrome coronavirus 2 infections with evidence of active viral replication, due to inability to mount an adequate humoral response to clear the virus. We present 3 B-cell-depleted patients with prolonged coronavirus disease 2019 infection who were successfully treated with a combination of casirivimab/imdevimab and remdesivir.
RESUMO
Background: Increased reinfection rates with SARS-CoV-2 have recently been reported, with some locations basing reinfection on a second positive PCR test at least 90 days after initial infection. Methods: We identified cases where patients had two positive tests for SARS-CoV-2 and evaluated which of these had been sequenced as part of our surveillance efforts, and evaluated sequencing and clinical data. Results: 750 patients (920 samples) had a positive test at least 90 days after the initial test. The median time between tests was 377 days, and 724 (79%) of the post 90-day positives were collected after the emergence of the Omicron variant in November 2021. Sequencing was attempted on 231 samples and successful in 127. Successful sequencing spiked during the Omicron surge and showed higher median days from initial infection compared to failed sequences (median 398 days compared to 276 days, p<0.0005). A total of 122 (98%) patients showed evidence of reinfection, 45 of which had sequence proven reinfection and 77 had inferred reinfections (later sequence showed a clade that was not circulating when the patient was initially infected). Children accounted for only 4% of reinfections. 43 (96%) of 45 infections with sequence proven reinfection were caused by the Omicron variant, 41 (91%) were symptomatic, 32 (71%), were vaccinated prior to the second infection, and 6 (13%) were Immunosuppressed. Only 2 (4%) were hospitalized, and both had underlying conditions. Conclusion: Sequence proven reinfections increased with the Omicron variant but generally caused mild infections.