Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
2.
J Cell Physiol ; 239(4): e31199, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38291668

RESUMO

The effects of exercise training (ET) on the heart of aortic stenosis (AS) rats are controversial and the mechanisms involved in alterations induced by ET have been poorly clarified. In this study, we analyzed the myocardial proteome to identify proteins modulated by moderate-intensity aerobic ET in rats with chronic supravalvular AS. Wistar rats were divided into four groups: sedentary control (C-Sed), exercised control (C-Ex), sedentary aortic stenosis (AS-Sed), and exercised AS (AS-Ex). ET consisted of five treadmill running sessions per week for 16 weeks. Statistical analysis was performed by ANOVA or Kruskal-Wallis and Goodman tests. Results were discussed at a significance level of 5%. At the end of the experiment, AS-Ex rats had higher functional capacity, lower blood lactate concentration, and better cardiac structural and left ventricular (LV) functional parameters than the AS-Sed. Myocardial proteome analysis showed that AS-Sed had higher relative protein abundance related to the glycolytic pathway, oxidative stress, and inflammation, and lower relative protein abundance related to beta-oxidation than C-Sed. AS-Ex had higher abundance of one protein related to mitochondrial biogenesis and lower relative protein abundance associated with oxidative stress and inflammation than AS-Sed. Proteomic data were validated for proteins related to lipid and glycolytic metabolism. Chronic pressure overload changes the abundance of myocardial proteins that are mainly involved in lipid and glycolytic energy metabolism in rats. Moderate-intensity aerobic training attenuates changes in proteins related to oxidative stress and inflammation and increases the COX4I1 protein, related to mitochondrial biogenesis. Protein changes are combined with improved functional capacity, cardiac remodeling, and LV function in AS rats.


Assuntos
Estenose da Valva Aórtica , Miocárdio , Condicionamento Físico Animal , Proteoma , Animais , Ratos , Estenose da Valva Aórtica/metabolismo , Inflamação , Lipídeos , Condicionamento Físico Animal/métodos , Proteômica , Ratos Wistar , Miocárdio/metabolismo
3.
Diabetol Metab Syndr ; 15(1): 223, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37908006

RESUMO

BACKGROUND: Sodium-glucose cotransporter (SGLT)2 inhibitors have displayed beneficial effects on the cardiovascular system in diabetes mellitus (DM) patients. As most clinical trials were performed in Type 2 DM, their effects in Type 1 DM have not been established. OBJECTIVE: To evaluate the influence of long-term treatment with SGLT2 inhibitor dapagliflozin on cardiac remodeling, myocardial function, energy metabolism, and metabolomics in rats with Type 1 DM. METHODS: Male Wistar rats were divided into groups: Control (C, n = 15); DM (n = 15); and DM treated with dapagliflozin (DM + DAPA, n = 15) for 30 weeks. DM was induced by streptozotocin. Dapagliflozin 5 mg/kg/day was added to chow. STATISTICAL ANALYSIS: ANOVA and Tukey or Kruskal-Wallis and Dunn. RESULTS: DM + DAPA presented lower glycemia and higher body weight than DM. Echocardiogram showed DM with left atrium dilation and left ventricular (LV) hypertrophy, dilation, and systolic and diastolic dysfunction. In LV isolated papillary muscles, DM had reduced developed tension, +dT/dt and -dT/dt in basal condition and after inotropic stimulation. All functional changes were attenuated by dapagliflozin. Hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK) activity was lower in DM than C, and PFK and PK activity higher in DM + DAPA than DM. Metabolomics revealed 21 and 5 metabolites positively regulated in DM vs. C and DM + DAPA vs. DM, respectively; 6 and 3 metabolites were negatively regulated in DM vs. C and DM + DAPA vs. DM, respectively. Five metabolites that participate in cell membrane ultrastructure were higher in DM than C. Metabolites levels of N-oleoyl glutamic acid, chlorocresol and N-oleoyl-L-serine were lower and phosphatidylethanolamine and ceramide higher in DM + DAPA than DM. CONCLUSION: Long-term treatment with dapagliflozin attenuates cardiac remodeling, myocardial dysfunction, and contractile reserve impairment in Type 1 diabetic rats. The functional improvement is combined with restored pyruvate kinase and phosphofructokinase activity and attenuated metabolomics changes.

4.
J Clin Med ; 12(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37763015

RESUMO

(1) Background: A high concentration of sodium chloride on in vitro cell culture leads to reduced SARS-CoV-2 replication. Therefore, our aim was to evaluate the effects of inhaling hypertonic NaCl particles (BREATHOX®) on the duration of COVID-19-induced acute symptoms. (2) Methods: A prospective, open label, randomized, standard of care-controlled group (SOC) pilot trial compared inhaled oral and nasal administered BREATHOX® (2.0 mg NaCl, particles size between 1-10 µm), with five or ten inhalations per day for ten days. The primary endpoint was the time to resolve COVID-19-related symptoms. Safety outcomes included adverse clinical and laboratory events. (3) Results: A total of 101 individuals were screened and 98 were randomly assigned to BREATHOX® ten sessions per day (Group 1; 33 patients), BREATHOX® five sessions per day (Group 2; 32 patients), or SOC (33 patients), and followed up for 28 days. There was an association with cough frequency after 10 days BREATHOX® compared to SOC [Group 1: hazard ratio (HR) 2.01, 95% confidence interval (CI) 1.06-3.81; Group 2: HR 2.17, 95% CI 1.17-4.04]. No differences between the groups for the reported symptoms' resolution time were seen after 28 days. After combining both BREATHOX® groups, the period to cough resolution 10 days after randomization was significantly lower than in SOC (HR 2.10, 95% CI 1.20-3.67). An adverse event occurred in 30% of Group 1, 36% of Group 2, and 9% in SOC individuals. One patient from SOC had a serious adverse event. Nasal burning, sore or itchy nose, and dry mouth were considered related to BREATHOX® use and resolved after stopping inhalations. (4) Conclusion: BREATHOX® inhalation is safe and may be effective in reducing the duration of COVID-19-induced coughing.

6.
Parasitol Int ; 96: 102770, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37301364

RESUMO

INTRODUCTION: Chagas disease (CD), caused by protozoan Trypanosoma cruzi (T. cruzi), is a neglected disease that affects millions of people worldwide. The parasite clearance by the immune cells is accomplished by the activation of inflammation and production of reactive oxygen species, including nitric oxide (NO) that can lead to tissue injury and DNA damage. On the other hand, to balance the oxidative environment and decrease free radicals, there is an antioxidant system composed of enzymes and vitamins. The aim was to evaluate oxidative stress parameters in symptomatic and asymptomatic patients with Chagas disease. METHODS: Participants were divided into three groups: indeterminate CD (asymptomatic, n = 8), CD with cardiac/digestive involvement (symptomatic, n = 14), and Control healthy individuals (n = 20). The following parameters were analyzed: DNA damage, NO serum levels, hydrophilic antioxidant capacity (HAC) and vitamin E. RESULTS: Symptomatic patients showed increased DNA damage and NO levels and lower HAC and vitamin E levels compared to asymptomatic patients and control subjects. CONCLUSIONS: It is possible to conclude that CD patients with clinical symptoms have higher oxidative stress, characterized by increased DNA damage and NO levels, and reduced antioxidant capacity and vitamin E levels.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Antioxidantes/metabolismo , Estresse Oxidativo , Vitamina E , Infecção Persistente , Óxido Nítrico , Doença Crônica
9.
Antioxidants (Basel) ; 12(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36829850

RESUMO

Although current guidelines recommend resistance exercise in combination with aerobic training to increase muscle strength and prevent skeletal muscle loss during cardiac remodeling, its effects are not clear. In this study, we evaluated the effects of resistance training on cardiac remodeling and the soleus muscle in long-term myocardial infarction (MI) rats. METHODS: Three months after MI induction, male Wistar rats were assigned to Sham (n = 14), MI (n = 9), and resistance exercised MI (R-MI, n = 13) groups. The rats trained three times a week for 12 weeks on a climbing ladder. An echocardiogram was performed before and after training. Protein expression of the insulin-like growth factor (IGF)-1/protein kinase B (Akt)/rapamycin target complex (mTOR) pathway was analyzed by Western blot. RESULTS: Mortality rate was higher in MI than Sham; in the R-MI group, mortality rate was between that in MI and Sham and did not differ significantly from either group. Exercise increased maximal load capacity without changing cardiac structure and left ventricular function in infarcted rats. Infarction size did not differ between infarcted groups. Catalase activity was lower in MI than Sham and glutathione peroxidase lower in MI than Sham and R-MI. Protein expression of p70S6K was lower in MI than Sham and p-FoxO3 was lower in MI than Sham and R-MI. Energy metabolism did not differ between groups, except for higher phosphofrutokinase activity in R-MI than MI. CONCLUSION: Resistance exercise is safe and increases muscle strength regardless structural and functional cardiac changes in myocardial-infarcted rats. This exercise modality attenuates soleus glycolytic metabolism changes and improves the expression of proteins required for protein turnover and antioxidant response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA