RESUMO
AIM: Arteriogenesis constitutes the most efficient endogenous rescue mechanism in cases of cerebral ischaemia. The aim of this work was to investigate whether angiotensin-converting enzyme inhibitors (ACEi) stimulates, and angiotensin II receptor type 1 blockers (ARB) inhibits cerebral collateral growth by applying a three-vessel occlusion (3-VO) model in rat. METHODS: Cerebral collateral growth was measured post 3-VO (1) by assessing blood flow using the cerebrovascular reserve capacity (CVRC) technique, and (2) by assessing vessel diameters in the posterior cerebral artery (PCA) via the evaluation of latex angiographies. A stimulatory effect on arteriogenesis was investigated for ACEi administration ± bradykinin receptor 1 (B1R) and 2 (B2R) blockers, and an inhibitory effect was analysed for ARB administration. Results were validated by immunohistochemical analysis and mechanistic data were collected by human umbilical vein endothelial cell (HUVEC) viability or scratch assay and monocyte (THP-1) migration assay. RESULTS: An inhibitory effect of ARB on arteriogenesis could not be demonstrated. However, collateral growth measurements demonstrated a significantly increased CVRC and PCA diameters in the ACEi group. ACEi stimulates cell viability and migration, which could be partially reduced by additional administration of bradykinin receptor 1 inhibitor (B1Ri). ACEi inhibits the degradation of pro-arteriogenic bradykinin derivatives, but combined ACEi + B1Ri + B1Ri (BRB) treatment did not reverse the stimulatory effect. Yet, co-administration of ACEi + BRB enhances arteriogenesis and cell migration. CONCLUSION: We demonstrate a potent stimulatory effect of ACEi on cerebral arteriogenesis in rats, presumable via B1R. However, results imply a pleiotropic and compensatory effect of ACEi on bradykinin receptor-stimulated arteriogenesis.
Assuntos
Inibidores da Enzima Conversora de Angiotensina , Isquemia Encefálica , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Hemodinâmica , RatosRESUMO
Background: We investigated the pleiotropic effects of an angiotensin receptor-neprilysin inhibitor (ARNi) on collateral-dependent myocardial perfusion in a rat model of coronary arteriogenesis, and performed comprehensive analyses to uncover the underlying molecular mechanisms. Methods: A rat model of coronary arteriogenesis was established by implanting an inflatable occluder on the left anterior descending coronary artery followed by a 7-day repetitive occlusion procedure (ROP). Coronary collateral perfusion was measured by using a myocardial particle infusion technique. The putative ARNi-induced pro-arteriogenic effects were further investigated and compared with an angiotensin-converting enzyme inhibitor (ACEi). Expression of the membrane receptors and key enzymes in the natriuretic peptide system (NPS), renin-angiotensin-aldosterone system (RAAS) and kallikrein-kinin system (KKS) were analyzed by quantitative polymerase chain reaction (qPCR) and immunoblot assay, respectively. Protein levels of pro-arteriogenic cytokines were measured by enzyme-linked immunosorbent assay, and mitochondrial DNA copy number was assessed by qPCR due to their roles in arteriogenesis. Furthermore, murine heart endothelial cells (MHEC5-T) were treated with a neprilysin inhibitor (NEPi) alone, or in combination with bradykinin receptor antagonists. MHEC5-T proliferation was analyzed by colorimetric assay. Results: The in vivo study showed that ARNis markedly improved coronary collateral perfusion, regulated the gene expression of KKS, and increased the concentrations of relevant pro-arteriogenic cytokines. The in vitro study demonstrated that NEPis significantly promoted MHEC5-T proliferation, which was diminished by bradykinin receptor antagonists. Conclusion: ARNis improve coronary collateral perfusion and exert pro-arteriogenic effects via the bradykinin receptor signaling pathway.
RESUMO
BACKGROUND: In the presence of a coronary occlusion, pre-existing small collateral vessels (arterioles) develop into much larger arteries (biological bypasses) that have the potential to allow a certain level of perfusion distal to the blockage. Termed arteriogenesis, this phenomenon proceeds via a complex combination of events, with nitric oxide (NO) playing an essential role. The aim of this study was to investigate the effects of supplemental administration of NO donors, i.e., short-acting nitroglycerin (NTG) or slow-release pelleted isosorbide dinitrate (ISDN), on collateral development in a repetitive coronary artery occlusion model in rats. METHODS: Coronary collateral growth was induced via a repetitive occlusion protocol (ROP) of the left anterior descending coronary artery (LAD) in rats. The primary endpoints were the histological evaluation of rat heart infarct size and ST-segment elevation (ECG-analysis) upon final permanent occlusion of the LAD (experimentally induced myocardial infarction). The effects of NTG or ISDN were also evaluated by administration during 5 days of ROP. We additionally investigated whether concomitant application of NTG can compensate for the anti-arteriogenic effect of acetylsalicylic acid (ASA). RESULTS: After 5 days of ROP, the mean infarct size and degree of ST-elevation were only slightly lower than those of the SHAM group; however, after 10 days of the protocol, the ROP group displayed significantly less severe infarct damage, indicating enhanced arteriogenesis. Intermittent NTG application greatly decreased the ST-elevation and infarct size. The ISDN also had a positive effect on arteriogenesis, but not to the same extent as the NTG. Administration of ASA increased the infarct severity; however, concomitant dosing with NTG somewhat attenuated this effect. CONCLUSION: Intermittent treatment with the short-acting NTG decreased the size of an experimentally induced myocardial infarct by promoting coronary collateral development. These new insights are of great relevance for future clinical strategies for the treatment of occlusive vascular diseases.
Assuntos
Oclusão Coronária/tratamento farmacológico , Dinitrato de Isossorbida/administração & dosagem , Infarto do Miocárdio/tratamento farmacológico , Nitroglicerina/administração & dosagem , Animais , Aorta Torácica , Aspirina/efeitos adversos , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiologia , Modelos Animais de Doenças , Humanos , Dinitrato de Isossorbida/farmacologia , Masculino , Nitroglicerina/farmacologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Projetos de PesquisaRESUMO
Objective: We investigated the impact of cardioprotective drugs on ST-elevation, arrhythmias and infarct size in a rat model of repetitive coronary artery occlusion. Methods: Seventy Sprague-Dawley rats were randomised to two control and five treatment groups. Placebo was either implantation of a pneumatic occluder onto the left anterior descending coronary artery (LAD) without starting repetitive occlusion (SHAM) or subsequent RO of the LAD over 10 days without medication (ROP). Treatment groups underwent RO and additionally received nitroglycerin (NTG), metoprolol, verapamil (VER), ranolazine (RAN) or candesartan (CAN). Two weeks after the intervention, rats underwent a single, sustained LAD occlusion followed by reperfusion. To evaluate differences in cardiac resistance against myocardial ischaemia and reperfusion injury, cardiac surrogate parameters including maximal ST-elevation, arrhythmias and infarct size were assessed. Results: Compared with sham, RO alone and RO plus nitroglycerin were associated with significantly lower maximal ST-elevation and percentage of infarcted myocardium (SHAM 0.12 mV, ROP 0.06 mV (p=0.004), NTG 0.05 mV (p=0.005); SHAM 16.2%, ROP 6.6% (p=0.008), NTG 5.9% (p=0.006). Compared with RO alone, RO plus RAN was accompanied by increased ST-elevation (0.13 mV, p=0.018) and RO plusVER or CAN by more infarcted myocardium (14.2%, p=0.004% and 15.5%, p=0.003, respectively). Rats treated with VER, RAN or CAN tended to severe arrhythmias more frequently than those of the control groups. Conclusions: RO led to an increased myocardial resistance against ischaemia and reperfusion injury. Concomitant administration of nitroglycerin did not affect the efficacy of RO. Cardiovascular channel or receptor blockers reduced the efficacy of RO.
RESUMO
UNLABELLED: Arteriogenesis involves the rapid proliferation of preexisting arterioles to fully functional arteries as a compensatory mechanism to overcome circulatory deficits. Stimulation of arteriogenesis has therefore been considered a treatment concept in arterial occlusive disease. Here, we investigated the impact of inhibition of protein tyrosine phosphatases (PTPs) on cerebral arteriogenesis in rats. Arteriogenesis was induced by occlusion of one carotid and both vertebral arteries (three-vessel occlusion (3-VO)). Collateral growth and functional vessel perfusion was assessed 3-35 days following 3-VO. Furthermore, animals underwent 3-VO surgery and were treated with the pan-PTP inhibitor BMOV, the SHP-1 inhibitor sodium stibogluconate (SSG), or the PTP1B inhibitor AS279. Cerebral vessel diameters and cerebrovascular reserve capacity (CVRC) were determined, together with immunohistochemistry analyses and proximity ligation assays (PLA) for determination of tissue proliferation and phosphorylation patterns after 7 days. The most significant changes in vessel diameter increase were present in the ipsilateral posterior cerebral artery (PCA), with proliferative markers (PCNA) being time-dependently increased. The CVRC was lost in the early phase after 3-VO and partially recovered after 21 days. PTP inhibition resulted in a significant increase in the ipsilateral PCA diameter in BMOV-treated animals and rats subjected to PTP1B inhibition. Furthermore, CVRC was significantly elevated in AS279-treated rats compared to control animals, along with hyperphosphorylation of the platelet-derived growth factor-ß receptor in the vascular wall in vivo. In summary, our data indicate PTPs as hitherto unrecognized negative regulators in cerebral arteriogenesis. Further, PTP inhibition leading to enhanced collateral growth and blood perfusion suggests PTPs as novel targets in anti-ischemic treatment. KEY MESSAGES: PTPs exhibit negative regulatory function in cerebral collateral growth in rats. Inhibition of pan-PTP/PTP1B increases vessel PDGF-ß receptor phosphorylation. PTP1B inhibition enhances arteriogenesis and cerebrovascular reserve capacity.
Assuntos
Encéfalo/irrigação sanguínea , Artérias Cerebrais/crescimento & desenvolvimento , Inibidores Enzimáticos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Animais , Encéfalo/enzimologia , Artérias Cerebrais/efeitos dos fármacos , Artérias Cerebrais/enzimologia , Masculino , Fosforilação , Proteínas Tirosina Fosfatases/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismoRESUMO
Unilateral common carotid artery occlusion (CCAO) is a standardized method to initiate collateral artery growth (arteriogenesis) in mouse brain. After CCAO is induced, blood circulation in the circle of Willis is changed and increases shear stress, which triggers increased arterial diameter and improvements in cerebrovascular reserve capacity. Functional improvement can be quantified after experimentally induced stroke by external middle cerebral artery occlusion (MCAO). Stroke volume is evaluated by standard tetrazolium chloride (TTC) staining. Here, we describe in vivo methods of CCAO and MCAO in detail and also the evaluation of stroke volume by TTC staining.
Assuntos
Isquemia Encefálica/fisiopatologia , Artérias Cerebrais/fisiopatologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/fisiopatologia , Neovascularização Fisiológica , Animais , CamundongosRESUMO
Collateral growth, arteriogenesis, represents a proliferative mechanism involving endothelial cells, smooth muscle cells, and monocytes/macrophages. Here we investigated the role of Density-Enhanced Phosphatase-1 (DEP-1) in arteriogenesis in vivo, a protein-tyrosine-phosphatase that has controversially been discussed with regard to vascular cell biology. Wild-type C57BL/6 mice subjected to permanent left common carotid artery occlusion (CCAO) developed a significant diameter increase in distinct arteries of the circle of Willis, especially in the anterior cerebral artery. Analyzing the impact of loss of DEP-1 function, induction of collateralization was quantified after CCAO and hindlimb femoral artery ligation comparing wild-type and DEP-1(-/-) mice. Both cerebral collateralization assessed by latex perfusion and peripheral vessel growth in the femoral artery determined by microsphere perfusion and micro-CT analysis were not altered in DEP-1(-/-) compared to wild-type mice. Cerebrovascular reserve capacity, however, was significantly impaired in DEP-1(-/-) mice. Cerebrovascular transcriptional analysis of proarteriogenic growth factors and receptors showed specifically reduced transcripts of PDGF-B. SiRNA knockdown of DEP-1 in endothelial cells in vitro also resulted in significant PDGF-B downregulation, providing further evidence for DEP-1 in PDGF-B gene regulation. In summary, our data support the notion of DEP-1 as positive functional regulator in vascular cerebral arteriogenesis, involving differential PDGF-B gene expression.
Assuntos
Regulação da Expressão Gênica , Neovascularização Fisiológica/genética , Proteínas Proto-Oncogênicas c-sis/biossíntese , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Animais , Becaplermina , Encéfalo/irrigação sanguínea , Encéfalo/fisiologia , Artéria Carótida Primitiva/crescimento & desenvolvimento , Artéria Carótida Primitiva/cirurgia , Células Cultivadas , Círculo Arterial do Cérebro/crescimento & desenvolvimento , Círculo Arterial do Cérebro/cirurgia , Humanos , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-sis/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Transdução de SinaisRESUMO
BACKGROUND AND PURPOSE: Restoration of cerebrovascular reserve capacity (CVRC) depends on the recruitment and positive outward remodeling of preexistent collaterals (arteriogenesis). With this study, we provide functional evidence that granulocyte colony-stimulating factor (G-CSF) augments therapeutic arteriogenesis in two animal models of cerebral hypoperfusion. We identified an effective dosing regimen that improved CVRC and stimulated collateral growth, thereby improving the outcome after experimentally induced stroke. METHODS: We used two established animal models of (a) cerebral hypoperfusion (mouse, common carotid artery ligation) and (b) cerebral arteriogenesis (rat, 3-vessel occlusion). Following therapeutic dose determination, both models received either G-CSF, 40 µg/kg every other day, or vehicle for 1 week. Collateral vessel diameters were measured following latex angiography. Cerebrovascular reserve capacities were assessed after acetazolamide stimulation. Mice with left common carotid artery occlusion (CCAO) were additionally subjected to middle cerebral artery occlusion, and stroke volumes were assessed after triphenyltetrazolium chloride staining. Given the vital role of monocytes in arteriogenesis, we assessed (a) the influence of G-CSF on monocyte migration in vitro and (b) monocyte counts in the adventitial tissues of the growing collaterals in vivo. RESULTS: CVRC was impaired in both animal models 1 week after induction of hypoperfusion. While G-CSF, 40 µg/kg every other day, significantly augmented cerebral arteriogenesis in the rat model, 50 or 150 µg/kg every day did not show any noticeable therapeutic impact. G-CSF restored CVRC in mice (5 ± 2 to 12 ± 6%) and rats (3 ± 4 to 19 ± 12%). Vessel diameters changed accordingly: in rats, the diameters of posterior cerebral arteries (ipsilateral: 209 ± 7-271 ± 57 µm; contralateral: 208 ± 11-252 ± 28 µm) and in mice the diameter of anterior cerebral arteries (185 ± 15-222 ± 12 µm) significantly increased in the G-CSF groups compared to controls. Stroke volume in mice (10 ± 2%) was diminished following CCAO (7 ± 4%) and G-CSF treatment (4 ± 2%). G-CSF significantly increased monocyte migration in vitro and perivascular monocyte numbers in vivo. CONCLUSION: G-CSF augments cerebral collateral artery growth, increases CVRC and protects from experimentally induced ischemic stroke. When comparing three different dosing regimens, a relatively low dosage of G-CSF was most effective, indicating that the common side effects of this cytokine might be significantly reduced or possibly even avoided in this indication.
Assuntos
Circulação Cerebrovascular/efeitos dos fármacos , Transtornos Cerebrovasculares/tratamento farmacológico , Círculo Arterial do Cérebro/crescimento & desenvolvimento , Circulação Colateral/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Animais , Arteriopatias Oclusivas/patologia , Estenose das Carótidas/patologia , Movimento Celular/efeitos dos fármacos , Transtornos Cerebrovasculares/patologia , Círculo Arterial do Cérebro/efeitos dos fármacos , Interpretação Estatística de Dados , Hemodinâmica/efeitos dos fármacos , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/uso terapêutico , Recuperação de Função FisiológicaRESUMO
This study investigated the effects of acetylsalicylic acid (ASA) and clopidogrel, standardly used in the secondary prevention of vascular occlusions, on cerebral arteriogenesis in vivo and in vitro. Cerebral hypoperfusion was induced by three-vessel occlusion (3-VO) in rats, which subsequently received vehicle, ASA (6.34 mg/kg), or clopidogrel (10 mg/kg). Granulocyte colony-stimulating factor (G-CSF), which enhanced monocyte migration in an additional cell culture model, augmented cerebrovascular arteriogenesis in subgroups (40 µg/kg). Cerebrovascular reactivity and vessel diameters were assessed at 7 and 21 days. Cerebrovascular reserve capacity was completely abolished after 3-VO and remained severely compromised after 7 (-14±14%) and 21 (-5±11%) days in the ASA groups in comparison with controls (4±5% and 10±10%) and clopidogrel (4±13% and 10±8%). It was still significantly decreased when ASA was combined with G-CSF (1±4%) compared with G-CSF alone (20±8%). Posterior cerebral artery diameters confirmed these data. Monocyte migration into the vessel wall, improved by G-CSF, was significantly reduced by ASA. Acetylsalicylic acid, but not clopidogrel, inhibits therapeutically augmented cerebral arteriogenesis.
Assuntos
Aspirina/farmacologia , Isquemia Encefálica/tratamento farmacológico , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Neovascularização Fisiológica/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Ticlopidina/análogos & derivados , Animais , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/fisiopatologia , Linhagem Celular , Angiografia Cerebral , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , Quimiotaxia de Leucócito/efeitos dos fármacos , Clopidogrel , Modelos Animais de Doenças , Humanos , Masculino , Monócitos/citologia , Monócitos/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Ratos , Ratos Sprague-Dawley , Ticlopidina/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologiaRESUMO
RATIONALE: Positive outward remodeling of pre-existing collateral arteries into functional conductance arteries, arteriogenesis, is a major endogenous rescue mechanism to prevent cardiovascular ischemia. Collateral arterial growth is accompanied by expression of kinin precursor. However, the role of kinin signaling via the kinin receptors (B1R and B2R) in arteriogenesis is unclear. OBJECTIVE: The purpose of this study was to elucidate the functional role and mechanism of bradykinin receptor signaling in arteriogenesis. METHODS AND RESULTS: Bradykinin receptors positively affected arteriogenesis, with the contribution of B1R being more pronounced than B2R. In mice, arteriogenesis upon femoral artery occlusion was significantly reduced in B1R mutant mice as evidenced by reduced microspheres and laser Doppler flow perfusion measurements. Transplantation of wild-type bone marrow cells into irradiated B1R mutant mice restored arteriogenesis, whereas bone marrow chimeric mice generated by reconstituting wild-type mice with B1R mutant bone marrow showed reduced arteriogenesis after femoral artery occlusion. In the rat brain 3-vessel occlusion arteriogenesis model, pharmacological blockade of B1R inhibited arteriogenesis and stimulation of B1R enhanced arteriogenesis. In the rat, femoral artery ligation combined with arterial venous shunt model resulted in flow-driven arteriogenesis, and treatment with B1R antagonist R715 decreased vascular remodeling and leukocyte invasion (monocytes) into the perivascular tissue. In monocyte migration assays, in vitro B1R agonists enhanced migration of monocytes. CONCLUSIONS: Kinin receptors act as positive modulators of arteriogenesis in mice and rats. B1R can be blocked or therapeutically stimulated by B1R antagonists or agonists, respectively, involving a contribution of peripheral immune cells (monocytes) linking hemodynamic conditions with inflammatory pathways.
Assuntos
Artérias/crescimento & desenvolvimento , Receptor B1 da Bradicinina/fisiologia , Receptor B2 da Bradicinina/fisiologia , Transdução de Sinais/fisiologia , Animais , Arteriopatias Oclusivas/metabolismo , Arteriopatias Oclusivas/fisiopatologia , Artérias/fisiopatologia , Artérias Cerebrais/crescimento & desenvolvimento , Artéria Femoral/crescimento & desenvolvimento , Membro Posterior/irrigação sanguínea , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/fisiopatologia , Ratos , Ratos Sprague-DawleyRESUMO
In the developing chicken embryo yolk sac vasculature, the expression of arterial identity genes requires arterial hemodynamic conditions. We hypothesize that arterial flow must provide a unique signal that is relevant for supporting arterial identity gene expression and is absent in veins. We analyzed factors related to flow, pressure and oxygenation in the chicken embryo vitelline vasculature in vivo. The best discrimination between arteries and veins was obtained by calculating the maximal pulsatile increase in shear rate relative to the time-averaged shear rate in the same vessel: the relative pulse slope index (RPSI). RPSI was significantly higher in arteries than veins. Arterial endothelial cells exposed to pulsatile shear in vitro augmented arterial marker expression as compared with exposure to constant shear. The expression of Gja5 correlated with arterial flow patterns: the redistribution of arterial flow provoked by vitelline artery ligation resulted in flow-driven collateral arterial network formation and was associated with increased expression of Gja5. In situ hybridization in normal and ligation embryos confirmed that Gja5 expression is confined to arteries and regulated by flow. In mice, Gja5 (connexin 40) was also expressed in arteries. In the adult, increased flow drives arteriogenesis and the formation of collateral arterial networks in peripheral occlusive diseases. Genetic ablation of Gja5 function in mice resulted in reduced arteriogenesis in two occlusion models. We conclude that pulsatile shear patterns may be central for supporting arterial identity, and that arterial Gja5 expression plays a functional role in flow-driven arteriogenesis.