Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13344, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858477

RESUMO

Cardiotrophin-like cytokine factor 1 (CLCF1) is an IL-6 family cytokine with neurotrophic and immuno-modulating functions. CLCF1 mRNA has been detected in primary and secondary lymphoid organs, and up-regulation of CLCF1 mRNA levels has been associated with the T helper (Th) 17 polarization. However, information regarding CLCF1 expression by immune cells at the protein level remains scarce. We have developed a methodology that uses a monoclonal antibody (mAb) directed against CLCF1 for the detection of human and mouse CLCF1 by flow cytometry. We have successfully detected CLCF1 protein expression in cells from the mouse pro-B cell line Ba/F3 that were transduced with CLCF1 cDNA. Interestingly, we found that the anti-CLCF1 mAb inhibits CLCF1 biological activity in vitro by binding to an epitope that encompasses site III of the cytokine. Moreover, we have detected CLCF1 expression in mouse splenic T cells, as well as in vitro differentiated Th1 cells. The specificity of the fluorescence signal was demonstrated using Clcf1-deficient lymphocytes generated using a conditional knock-out mouse model. The detection of CLCF1 protein by flow cytometry will be a valuable tool to study CLCF1 expression during normal and pathological immune responses.


Assuntos
Anticorpos Monoclonais , Citocinas , Citometria de Fluxo , Animais , Citometria de Fluxo/métodos , Camundongos , Humanos , Anticorpos Monoclonais/imunologia , Citocinas/metabolismo , Camundongos Knockout , Linhagem Celular , Células Th1/imunologia , Células Th1/metabolismo
2.
Front Immunol ; 12: 673061, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122431

RESUMO

Persistent immune activation and inflammation in people living with HIV (PLWH) are associated with immunosenescence, premature aging and increased risk of non-AIDS comorbidities, with the underlying mechanisms not fully understood. In this study, we show that downregulation of the T-cell immunoglobulin receptor CD96 on CD8+ T cells from PLWH is associated with decreased expression of the co-stimulatory receptors CD27 and CD28, higher expression of the senescence marker CD57 and accumulation of a terminally differentiated T-cell memory phenotype. In addition, we show that CD96-low CD8+ T-cells display lower proliferative potential compared to their CD96-high counterparts and that loss of CD96 expression by HIV-specific CD8+ T-cells is associated with a suboptimal response to HIV antigens. In conclusion, our results suggest that CD96 marks CD8+ T-cells with competent responses to HIV and the loss of its expression might be used as a biomarker for CD8+ T-cell senescence and dysfunction in PLWH.


Assuntos
Antígenos CD/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , Adulto , Antígenos CD/biossíntese , Diferenciação Celular/imunologia , Feminino , Humanos , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade
3.
Oncogene ; 40(2): 452-464, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33177649

RESUMO

Interleukin-17 receptor D (IL-17RD), also known as similar expression to Fgf genes (SEF), is proposed to act as a signaling hub that negatively regulates mitogenic signaling pathways, like the ERK1/2 MAP kinase pathway, and innate immune signaling. The expression of IL-17RD is downregulated in certain solid tumors, which has led to the hypothesis that it may exert tumor suppressor functions. However, the role of IL-17RD in tumor biology remains to be studied in vivo. Here, we show that genetic disruption of Il17rd leads to the increased formation of spontaneous tumors in multiple tissues of aging mice. Loss of IL-17RD also promotes tumor development in a model of colitis-associated colorectal cancer, associated with an exacerbated inflammatory response. Colon tumors from IL-17RD-deficient mice are characterized by a strong enrichment in inflammation-related gene signatures, elevated expression of pro-inflammatory tumorigenic cytokines, such as IL-17A and IL-6, and increased STAT3 tyrosine phosphorylation. We further show that RNAi depletion of IL-17RD enhances Toll-like receptor and IL-17A signaling in colon adenocarcinoma cells. No change in the proliferation of normal or tumor intestinal epithelial cells was observed upon genetic inactivation of IL-17RD. Our findings establish IL-17RD as a tumor suppressor in mice and suggest that the protein exerts its function mainly by limiting the extent and duration of inflammation.


Assuntos
Carcinogênese/patologia , Colite/complicações , Neoplasias do Colo/patologia , Inflamação/complicações , Receptores de Interleucina/fisiologia , Animais , Carcinogênese/metabolismo , Proliferação de Células , Neoplasias do Colo/etiologia , Neoplasias do Colo/metabolismo , Citocinas/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Fator de Transcrição STAT3/metabolismo , Transcriptoma , Tirosina/metabolismo
4.
Front Immunol ; 10: 2133, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552057

RESUMO

Cardiotrophin-like cytokine factor 1 (CLCF1) is secreted as a complex with the cytokine receptor-like factor 1 (CRLF1). Syndromes caused by mutations in the genes encoding CLCF1 or CRLF1 suggest an important role for CLCF1 in the development and regulation of the immune system. In mice, CLCF1 induces B-cell expansion, enhances humoral responses and triggers autoimmunity. Interestingly, inactivation of CRLF1, which impedes CLCF1 secretion, leads to a marked reduction in the number of bone marrow (BM) progenitor cells, while mice heterozygous for CLCF1 display a significant decrease in their circulating leukocytes. We therefore hypothesized that CLCF1 might be implicated in the regulation of hematopoiesis. To test this hypothesis, murine hematopoietic progenitor cells defined as Lin-Sca1+c-kit+ (LSK) were treated in vitro with ascending doses of CLCF1. The frequency and counts of LSK cells were significantly increased in the presence of CLCF1, which may be mediated by several CLCF1-induced soluble factors including IL-6, G-CSF, IL-1ß, IL-10, and VEGF. CLCF1 administration to non-diseased C57BL/6 mice resulted in a pronounced increase in circulating myeloid cells, which was concomitant with augmented LSK and myeloid cell counts in the BM. Likewise, CLCF1 administration to mice following sub-lethal irradiation or congeneic BM transplantation (BMT) resulted in accelerated LSK recovery along with a sustained increase in BM-derived CD11b+ cells. Altogether, our observations establish an important and unforeseen role for CLCF1 in regulating hematopoiesis with a bias toward myeloid cell differentiation.


Assuntos
Hematopoese , Células Progenitoras Mieloides/fisiologia , Receptores de Citocinas/genética , Animais , Feminino , Hematopoese/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Células Progenitoras Mieloides/efeitos dos fármacos , Proteínas Recombinantes/farmacologia
5.
J Biol Chem ; 294(32): 11952-11959, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31248987

RESUMO

Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into adipocytes, chondrocytes, or osteocytes. MSCs secrete an array of cytokines and express the LIFRß (leukemia inhibitory factor receptor) chain on their surface. Mutations in the gene coding for LIFRß lead to a syndrome with altered bone metabolism. LIFRß is one of the signaling receptor chains for cardiotrophin-like cytokine (CLCF1), a neurotrophic factor known to modulate B and myeloid cell functions. We investigated its effect on MSCs induced to differentiate into osteocytes in vitro Our results indicate that CLCF1 binds mouse MSCs, triggers STAT1 and -3 phosphorylation, inhibits the up-regulation of master genes involved in the control of osteogenesis, and markedly prevents osteoblast generation and mineralization. This suggests that CLCF1 could be a target for therapeutic intervention with agents such as cytokine traps or blocking mAbs in bone diseases such as osteoporosis.


Assuntos
Diferenciação Celular , Citocinas/metabolismo , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Animais , Células da Medula Óssea/citologia , Células Cultivadas , Citocinas/genética , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese , Osteoblastos/metabolismo , Osteogênese , Fosforilação , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Regulação para Cima
6.
J Immunol ; 201(8): 2462-2471, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30209193

RESUMO

CLCF1 is a neurotrophic and B cell-stimulating factor belonging to the IL-6 family. Mutations in the gene coding for CLCF1 or its secretion partner CRLF1 lead to the development of severe phenotypes, suggesting important nonredundant roles in development, metabolism, and immunity. Although CLCF1 was shown to promote the proliferation of the myeloid cell line M1, its roles on myeloid activation remain underinvestigated. We characterized the effects of CLCF1 on myeloid cells with a focus on monocyte-macrophage and macrophage-foam cell differentiations. CLCF1 injections in mice resulted in a significant increase in CD11b+ circulating cells, including proinflammatory monocytes. Furthermore, CLCF1 activated STAT3 phosphorylation in bone marrow CD11b+ cells and in bone marrow-derived macrophages (BMDM). BMDM stimulated with CLCF1 produced a large array of proinflammatory factors comprising IL-6, IL-9, G-CSF, GM-CSF, IL-1ß, IL-12, CCL5, and CX3CL1. The pattern of cytokines and chemokines released by CLCF1-treated BMDM led us to investigate the role of CLCF1 in foam cell formation. When pretreated with CLCF1, BMDM presented a marked SR-A1 upregulation, an increase in acetylated-low-density lipoprotein uptake, and an elevated triglyceride accumulation. CLCF1-induced SR-A1 upregulation, triglyceride accumulation, and acetylated-low-density lipoprotein uptake could be prevented using ruxolitinib, a JAK inhibitor, indicating that the effects of the cytokine on myeloid cells result from activation of the canonical JAK/STAT signaling pathway. Our data reveal novel biological roles for CLCF1 in the control of myeloid function and identify this cytokine as a strong inducer of macrophage-foam cell transition, thus bringing forward a new potential therapeutic target for atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Diferenciação Celular , Citocinas/metabolismo , Células Espumosas/fisiologia , Macrófagos/fisiologia , Animais , Aterosclerose/patologia , Células Cultivadas , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Janus Quinases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mielopoese , Fatores de Transcrição STAT , Receptores Depuradores Classe A/metabolismo , Transdução de Sinais
7.
Sci Rep ; 8(1): 3990, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29507344

RESUMO

The cytokines CLCF1 and CNTF are ligands for the CNTF receptor and the apolipoprotein E (ApoE) receptor sortilin. Both share structural similarities with the N-terminal domain of ApoE, known to bind CNTF. We therefore evaluated whether ApoE or ApoE-containing lipoproteins interact with CLCF1 and regulate its activity. We observed that CLCF1 forms complexes with the three major isoforms of ApoE in co-immunoprecipitation and proximity assays. FPLC analysis of mouse and human sera mixed with CLCF1 revealed that CLCF1 co-purifies with plasma lipoproteins. Studies with sera from ApoE-/- mice indicate that ApoE is not required for CLCF1-lipoprotein interactions. VLDL- and LDL-CLCF1 binding was confirmed using proximity and ligand blots assays. CLCF1-induced STAT3 phosphorylation was significantly reduced when the cytokine was complexed with VLDL. Physiological relevance of our findings was asserted in a mouse model of oxygen-induced retinopathy, where the beneficial anti-angiogenic properties of CLCF1 were abrogated when co-administrated with VLDL, indicating, that CLCF1 binds purified lipoproteins or lipoproteins in physiological fluids such as serum and behave as a "lipocytokine". Albeit it is clear that lipoproteins modulate CLCF1 activity, it remains to be determined whether lipoprotein binding directly contributes to its neurotrophic function and its roles in metabolic regulation.


Assuntos
Citocinas/metabolismo , Lipoproteínas VLDL/metabolismo , Animais , Apolipoproteínas E/metabolismo , Humanos , Lipoproteínas LDL/metabolismo , Camundongos Endogâmicos C57BL , Fosforilação , Ligação Proteica , Doenças Retinianas/metabolismo , Fator de Transcrição STAT3/metabolismo
8.
BMC Complement Altern Med ; 18(1): 37, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29378549

RESUMO

BACKGROUND: Our team has identified 17 Boreal forest species from the traditional pharmacopeia of the Eastern James Bay Cree that presented promising in vitro and in vivo biological activities in the context of type 2 diabetes (T2D). We now screened the 17 plants extracts for potential anti-apoptotic activity in cultured kidney cells and investigated the underlying mechanisms. METHODS: MDCK (Madin-Darnby Canine Kidney) cell damage was induced by hypertonic medium (700 mOsm/L) in the presence or absence of maximal nontoxic concentrations of each of the 17 plant extracts. After 18 h' treatment, cells were stained with Annexin V (AnnV) and Propidium iodide (PI) and subjected to flow cytometry to assess the cytoprotective (AnnV-/PI-) and anti-apoptotic (AnnV+/PI-) potential of the 17 plant extracts. We then selected a representative subset of species (most cytoprotective, moderately so or neutral) to measure the activity of caspases 3, 8 and 9. RESULTS: Gaultheria hispidula and Abies balsamea are amongst the most powerful cytoprotective and anti-apoptotic plants and appear to exert their modulatory effect primarily by inhibiting caspase 9 in the mitochondrial apoptotic signaling pathway. CONCLUSION: We conclude that several Cree antidiabetic plants exert anti-apoptotic activity that may be relevant in the context of diabetic nephropathy (DN) that affects a significant proportion of Cree diabetics.


Assuntos
Hipoglicemiantes/farmacologia , Medicina Tradicional , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Substâncias Protetoras/farmacologia , Animais , Anexina A5/química , Apoptose/efeitos dos fármacos , Canadá , Caspases/metabolismo , Nefropatias Diabéticas/metabolismo , Cães , Hipoglicemiantes/química , Células Madin Darby de Rim Canino , Extratos Vegetais/química , Propídio/química , Substâncias Protetoras/química
9.
J Biol Chem ; 292(16): 6644-6656, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28280243

RESUMO

Epstein-Barr virus-induced gene 3 (EBI3) is a subunit of the composite cytokines IL-27 and IL-35. Both have beneficial functions or effects in models of infectious and autoimmune diseases. This suggests that administration of EBI3 could be therapeutically useful by binding free p28 and p35 to generate IL-27 and IL-35. IL-27- and IL-35-independent functions of EBI3 could compromise its therapeutic uses. We therefore assessed the effects of EBI3 on cytokine receptor-expressing cells. We observed that EBI3 activates STAT3 and induces the proliferation of the IL-6-dependent B9 mouse plasmacytoma cell line. Analyses using blocking mAbs and Ba/F3 transfectants expressing gp130 indicate that EBI3 activity was linked to its capacity to mediate IL-6 trans-signaling, albeit less efficiently than soluble IL-6Rα. In line with this interpretation, co-immunoprecipitation and SPR experiments indicated that EBI3 binds IL-6. An important pro-inflammatory function of IL-6 trans-signaling is to activate blood vessel endothelial cells. We observed that EBI3 in combination with IL-6 could induce the expression of chemokines by human venal endothelial cells. Our results indicate that EBI3 can promote pro-inflammatory IL-6 functions by mediating trans-signaling. These unexpected observations suggest that use of EBI3 as a therapeutic biologic for autoimmune diseases will likely require co-administration of soluble gp130 to prevent the side effects associated with IL-6 trans-signaling. Together with previous studies that demonstrated activation of IL-6R by p28 (IL-30), new findings further suggest a complex interrelation between IL-27 and IL-6.


Assuntos
Interleucina-6/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Receptores de Citocinas/metabolismo , Transdução de Sinais , Animais , Anticorpos Monoclonais/química , Linhagem Celular Tumoral , Proliferação de Células , Quimiocinas/metabolismo , Receptor gp130 de Citocina/metabolismo , Feminino , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação , Interleucinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Plasmocitoma/metabolismo , Ligação Proteica , Receptores de Interleucina-6/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
10.
Cytokine ; 82: 122-4, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26817395

RESUMO

The incidence of obesity is increasing worldwide. Obesity is accompanied by a chronic inflammatory state that increases the risk of metabolic diseases such as insulin-resistance and type 2 diabetes. Over the past two decades, interest in immunomodulatory cytokines as potential mediators and/or targets for treatment or prevention of obesity and metabolic syndrome has increased. In this review, we summarize studies that revealed the effects of LIF family cytokines on adipose tissue, energy expenditure and food intake, highlighting the importance of gp130/LIFRß signaling in obesity and obesity-related metabolic diseases.


Assuntos
Fator Neurotrófico Ciliar/imunologia , Diabetes Mellitus Tipo 2/imunologia , Fator Inibidor de Leucemia/imunologia , Síndrome Metabólica/imunologia , Obesidade/imunologia , Animais , Diabetes Mellitus Tipo 2/patologia , Humanos , Síndrome Metabólica/patologia , Obesidade/patologia , Fatores de Risco
11.
Nat Immunol ; 17(1): 65-75, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26595887

RESUMO

Viral respiratory tract infections are the main causative agents of the onset of infection-induced asthma and asthma exacerbations that remain mechanistically unexplained. Here we found that deficiency in signaling via type I interferon receptor led to deregulated activation of group 2 innate lymphoid cells (ILC2 cells) and infection-associated type 2 immunopathology. Type I interferons directly and negatively regulated mouse and human ILC2 cells in a manner dependent on the transcriptional activator ISGF3 that led to altered cytokine production, cell proliferation and increased cell death. In addition, interferon-γ (IFN-γ) and interleukin 27 (IL-27) altered ILC2 function dependent on the transcription factor STAT1. These results demonstrate that type I and type II interferons, together with IL-27, regulate ILC2 cells to restrict type 2 immunopathology.


Assuntos
Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Linfócitos/imunologia , Infecções Respiratórias/imunologia , Animais , Citocinas/biossíntese , Citocinas/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Infecções Respiratórias/patologia
12.
J Immunol Res ; 2015: 714964, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26146641

RESUMO

CLCF-1 is a cytokine known for B-cell stimulation and for neurotrophic properties. We have identified CLCF-1 as a potential injurious factor in the human renal disease focal segmental glomerulosclerosis (FSGS). We investigated its effects on renal cells and renal function in in vitro and in vivo studies. Methods include measurement of the effect of CLCF-1 on phosphorylation of target molecules of the JAK/STAT pathway, on cytoskeleton and cell morphology in cultured podocytes, on albumin permeability of isolated rat glomeruli, and on tissue phosphorylation and urine albumin after acute or chronic CLCF-1 injection. In addition, cell sorting was performed to determine the presence of cells expressing CLCF-1 in spleen and bone marrow of normal mice and the effect of CLCF-1 infusion on splenic B-cell populations. CLCF-1 increased phosphorylation of STAT3 in multiple cell types, activated podocytes leading to formation of lamellipodia and decrease in basal stress fibers, increased glomerular albumin permeability, and increased STAT3 phosphorylation of peripheral blood cells and renal cortex. CLCF-1 increased urine albumin/creatinine ratio in mice and increased B-cell expression of IgG in mouse spleen. We conclude that CLCF-1 has potentially important systemic effects, alters podocyte function, and may contribute to renal dysfunction and albuminuria.


Assuntos
Células Sanguíneas/efeitos dos fármacos , Citocinas/farmacologia , Interleucina-6/farmacologia , Rim/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Células Sanguíneas/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Citocinas/administração & dosagem , Citocinas/sangue , Humanos , Janus Quinase 2/metabolismo , Rim/metabolismo , Córtex Renal/efeitos dos fármacos , Córtex Renal/metabolismo , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/metabolismo , Masculino , Camundongos , Fosforilação , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Ratos , Proteínas Recombinantes , Baço/citologia
13.
Cytokine Growth Factor Rev ; 26(5): 507-15, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26187860

RESUMO

Ciliary neurotrophic factor (CNTF) is the most extensively studied member of the cytokine family that signal through intracellular chains of the gp130/LIFRß receptor. The severe phenotype in patients suffering from mutations inactivating LIFRß indicates that members of this cytokine family play key, non-redundant roles during development. Accordingly, three decades of research has revealed potent and promising trophic and regulatory activities of CNTF in neurons, oligodendrocytes, muscle cells, bone cells, adipocytes and retinal cells. These findings led to clinical trials to test the therapeutic potential of CNTF and CNTF derivatives for treating neurodegenerative and metabolic diseases. Promising results have encouraged continuation of studies for treating retinal degenerative diseases. Results of some clinical trials showed that side-effects may limit the systemically administrated doses of CNTF. Therefore, therapies being currently tested rely on local delivery of CNTF using encapsulated cytokine-secreting implants. Since the side effects of CNTF might be linked to its ability to activate the alternative IL6Rα-LIFRß-gp130 receptor, CNTFR-specific mutants of CNTF have been developed that bind to the CNTFRα-LIFRß-gp130 receptor. These developments may prove to be a breakthrough for therapeutic applications of systemically administered CNTF in pathologies such as multiple sclerosis or Alzheimer's disease. The "designer cytokine approach" offers future opportunities to further enhance specificity by conjugating mutant CNTF with modified soluble CNTFRα to target therapeutically relevant cells that express gp130-LIFRß and a specific cell surface marker.


Assuntos
Fator Neurotrófico Ciliar/uso terapêutico , Síndrome Metabólica/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Fator Neurotrófico Ciliar/genética , Fator Neurotrófico Ciliar/imunologia , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/genética , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/imunologia , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/imunologia , Humanos , Síndrome Metabólica/genética , Síndrome Metabólica/imunologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/imunologia , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/imunologia
14.
Transl Res ; 166(4): 384-98, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25843671

RESUMO

Recurrence of idiopathic focal segmental glomerulosclerosis (FSGS) after renal transplantation is believed to be caused by a circulating factor(s). We detected cardiotrophin-like cytokine factor 1 (CLCF1), a member of the interleukin 6 family, in the plasma from patients with recurrent FSGS. We hypothesized that CLCF1 contributes to the effect of FSGS serum on the glomerular filtration barrier in vitro. Presently, we studied the effect of CLCF1 on isolated rat glomeruli using an in vitro assay of albumin permeability (P(alb)). CLCF1 (0.05-100 ng/mL) increased P(alb) and caused maximal effect at 5-10 ng/mL (P < 0.001). The increase in Palb was analogous to the effect of FSGS serum. Anti-CLCF1 monoclonal antibody blocked the CLCF1-induced increase in P(alb) and significantly attenuated the effect of FSGS serum (P < 0.001). The heterodimer composed of CLCF1 and cosecreted molecule cytokine receptor-like factor 1 (CRLF1) attenuated the increase in P(alb) caused by CLCF1 or FSGS serum. Western blot analysis showed that CLCF1 upregulated phosphorylation of signal transducer and activator of transcription 3 (STAT3) (Tyr705) in glomeruli. This effect was diminished by the heterodimer CLCF1-CRLF1. Janus kinase 2 (JAK2) inhibitor BMS-1119543 or STAT3 inhibitor Stattic significantly blocked the effect of CLCF1 or FSGS serum on P(alb) (P < 0.001). These novel findings suggest that when monomeric CLCF1 increases P(alb), the heterodimer CLCF1-CRLF1 may protect the glomerular filtration barrier. We speculate that albuminuria in FSGS is related to qualitative or quantitative changes in the CLCF1-CRLF1 complex, and that JAK2 or STAT3 inhibitors may be novel therapeutic agents to treat FSGS.


Assuntos
Citocinas/farmacologia , Barreira de Filtração Glomerular/metabolismo , Glomerulosclerose Segmentar e Focal/sangue , Janus Quinase 2/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Albuminas/metabolismo , Animais , Anticorpos Bloqueadores/farmacologia , Barreira de Filtração Glomerular/efeitos dos fármacos , Humanos , Janus Quinase 2/metabolismo , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/patologia , Masculino , Permeabilidade/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Multimerização Proteica/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de Citocinas/metabolismo , Fator de Transcrição STAT3/metabolismo , Regulação para Cima/efeitos dos fármacos
15.
J Immunol ; 191(4): 1657-65, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23836062

RESUMO

IL-27 is an APC-derived IL-6/IL-12 family composite cytokine with multiple functions such as regulation of Th1, Th17, and regulatory T cell differentiation, B cell proliferation, and Ig class switching. The IL-27 complex is formed by the association of the cytokine p28 with the soluble cytokine receptor EBV-induced gene 3 (EBI3). The IL-27 cytokine and soluble receptor subunits p28 and EBI3 can be secreted independently. The p28 subunit has been shown to have IL-27-independent biological activities. We previously demonstrated that p28 can form an alternative composite cytokine with the EBI3 homolog cytokine-like factor 1 (CLF; CRLF1). p28/CLF modulates NK cell activity and CD4 T cell cytokine production in vitro. In this study we used IL-6-dependent plasmacytoma cell line B9 and CD4 T cells from IL-27Rα-deficient mice to demonstrate that p28/CLF activates IL-27-unresponsive cells, indicating that p28/CLF and IL-27 signal through different receptors. The observation that p28/CLF, unlike IL-27, sustains B9 plasmacytoma cell proliferation prompted us to investigate the effects of p28/CLF on mouse B cells. We observed that p28/CLF induces IgM, IgG2c, and IgG1 production and plasma cell differentiation. p28/CLF therefore has the potential to contribute to B and plasma cell function, differentiation, and proliferation in normal and pathological conditions such as Castelman's disease and multiple myeloma.


Assuntos
Linfócitos B/citologia , Interleucinas/imunologia , Linfopoese/fisiologia , Plasmócitos/citologia , Animais , Linfócitos B/imunologia , Divisão Celular , Linhagem Celular , Feminino , Imunoglobulinas/biossíntese , Interleucinas/genética , Janus Quinases/fisiologia , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Plasmócitos/imunologia , Processamento de Proteína Pós-Traducional , Receptores de Citocinas/deficiência , Receptores de Citocinas/genética , Receptores de Interleucina , Proteínas Recombinantes de Fusão/imunologia , Fatores de Transcrição STAT/fisiologia , Transdução de Sinais , Células Th2/imunologia , Transfecção
16.
J Immunol ; 191(4): 1873-82, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23863905

RESUMO

Newborns and infants present a higher susceptibility to infection than adults, a vulnerability associated with deficiencies in both the innate and adaptive immune systems. Innate immune receptors are sensors involved in the recognition and elimination of microbes that play a pivotal role at the interface between innate and adaptive immunity. Pentraxin 3 (PTX3), the prototypic long pentraxin, is a soluble pattern recognition receptor involved in the initiation of protective responses against selected pathogens. Because neonates are generally resistant to these pathogens, we suspected that PTX3 may be provided by a maternal source during the early life times. We observed that human colostrum contains high levels of PTX3, and that mammary epithelial cell and CD11b(+) milk cells constitutively produce PTX3. Interestingly, PTX3 given orally to neonate mice was rapidly distributed in different organs, and PTX3 ingested during lactation was detected in neonates. Finally, we observed that orally administered PTX3 provided protection against Pseudomonas aeruginosa lung infection in neonate mice. Therefore, breastfeeding constitutes, during the early life times, an important source of PTX3, which actively participates in the protection of neonates against infections. In addition, these results suggest that PTX3 might represent a therapeutic tool for treating neonatal infections and support the view that breastfeeding has beneficial effects on the neonates' health.


Assuntos
Aleitamento Materno , Proteína C-Reativa/fisiologia , Colostro/química , Recém-Nascido/imunologia , Leite Humano/química , Pneumonia Bacteriana/prevenção & controle , Infecções por Pseudomonas/prevenção & controle , Componente Amiloide P Sérico/fisiologia , Administração Oral , Adulto , Animais , Animais Recém-Nascidos , Mama/citologia , Proteína C-Reativa/administração & dosagem , Proteína C-Reativa/análise , Proteína C-Reativa/biossíntese , Proteína C-Reativa/farmacocinética , Antígeno CD11b/análise , Linhagem Celular , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Endotoxinas/farmacologia , Endotoxinas/toxicidade , Células Epiteliais/metabolismo , Feminino , Humanos , Lactação , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Leite Humano/citologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Proteínas do Tecido Nervoso/biossíntese , Componente Amiloide P Sérico/administração & dosagem , Componente Amiloide P Sérico/análise , Componente Amiloide P Sérico/farmacocinética , Organismos Livres de Patógenos Específicos , Distribuição Tecidual
17.
J Immunol ; 190(6): 2931-7, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23390294

RESUMO

The p28 subunit of the composite cytokine IL-27 comprises a polyglutamic acid domain, which is unique among type I cytokines. This domain is very similar to the acidic domain known to confer hydroxyapatite (HA)-binding properties and bone tropism to bone sialoprotein. We observed IL-27 binding to HA, in accordance with previous studies reporting successful p28 HA chromatography. The IL-27 polyglutamic acid domain is located in a flexible inter-α helix loop, and HA-bound IL-27 retained biological activity. Using IL-27 alanine mutants, we observed that the p28 polyglutamic acid domain confers HA- and bone-binding properties to IL-27 in vitro and bone tropism in vivo. Because IL-27 is a potent regulator of cells residing in endosteal bone marrow niches such as osteoclasts, T regulatory, memory T, plasma, and stem cells, this specific property could be beneficial for therapeutic applications. IL-27 has potent antitumoral and antiosteoclastogenic activities. It could therefore also be useful for therapies targeting hematologic cancer or solid tumors metastasis with bone tropism. Furthermore, these observations suggest that polyglutamic motifs could be grafted onto other type I cytokine inter-α helix loops to modify their pharmacological properties.


Assuntos
Medula Óssea/química , Durapatita/química , Interleucinas/metabolismo , Ácido Poliglutâmico/química , Motivos de Aminoácidos/imunologia , Animais , Medula Óssea/imunologia , Medula Óssea/metabolismo , Linfócitos T CD8-Positivos/química , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/transplante , Células Cultivadas , Durapatita/metabolismo , Feminino , Humanos , Interleucinas/genética , Interleucinas/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/imunologia , Osteoclastos/metabolismo , Ácido Poliglutâmico/genética , Ácido Poliglutâmico/uso terapêutico , Ligação Proteica/imunologia , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Células Estromais/imunologia , Células Estromais/metabolismo
18.
JAKSTAT ; 2(4): e25352, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24498539

RESUMO

Dendritic cells (DC) play a key role in immunity by recognizing and presenting antigens. Cytokines and cytokine-activated transcription factors are fundamental in the regulation of the DC differentiation and their functions. While the role of STAT3 in DC development is well established, the function of STAT5 in DC has yet to be fully elucidated. A recent study published in Nature Immunology by Bell et al., using the DC-specific deletion of Stat5, demonstrated the importance of STAT5 in the induction of a Th2 response in DC. As the activation of this transcription factor is not required for the induction of a Th1 response, the authors further investigated the role STAT5 in the signaling to thymic stromal lymphopoietin (TSLP), a cytokine known to be important for type 2 inflammatory responses. Their results demonstrate the importance of STAT5 activation during TLSP-induced Th2 responses and suggest that DC are a key TLSP target.

19.
Cytokine ; 60(3): 653-60, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22986012

RESUMO

Ciliary neurotrophic factor (CNTF) and cardiotrophin-like cytokine (CLC) are two cytokines with neurotrophic and immunomodulatory activities. CNTF is a cytoplasmic factor believed to be released upon cellular damage, while CLC requires interaction with a soluble cytokine receptor, cytokine-like factor 1 (CLF), to be efficiently secreted. Both cytokines activate a receptor complex comprising the cytokine binding CNTF receptor α (CNTFRα) and two signaling chains namely, leukemia inhibitory factor receptor ß (LIFRß) and gp130. Human CNTF can recruit and activate an alternative receptor in which CNTFRα is substituted by IL-6Rα. As both CNTF and CLC have immune-regulatory activities in mice, we compared their ability to recruit mouse receptors comprising both gp130 and LIFRß signaling chains and either IL-6Rα or IL-11Rα which, unlike CNTFRα, are expressed by immune cells. Our results indicate that 1) mouse CNTF, like its human homologue, can activate cells expressing gp130/LIFRß with either CNTFRα or IL-6Rα and, 2) CLC/CLF is more restricted in its specificity in that it activates only the tripartite CNTFR. Several gp130 signaling cytokines influence T helper cell differentiation. We therefore investigated the effect of CNTF on CD4 T cell cytokine production. We observed that CNTF increased the number of IFN-γ producing CD4 T cells. As IFN-γ is considered a mediator of the therapeutic effect of IFN-ß in multiple sclerosis, induction of IFN-γ by CNTF may contribute to the beneficial immunomodulatory effect of CNTF in mouse multiple sclerosis models. Together, our results indicate that CNTF activates the same tripartite receptors in mouse and human cells and further validate rodent models for pre-clinical investigation of CNTF and CNTF derivatives. Furthermore, CNTF and CLC/CLF differ in their receptor specificities. The receptor α chain involved in the immunomodulatory effects of CLC/CLF remains to be identified.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/metabolismo , Fator Neurotrófico Ciliar/metabolismo , Citocinas/metabolismo , Receptores de Citocinas/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Receptor gp130 de Citocina/metabolismo , Humanos , Interferon gama/biossíntese , Subunidade alfa de Receptor de Interleucina-11/metabolismo , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Interleucina-6/metabolismo , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/metabolismo
20.
Cytokine ; 60(2): 575-82, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22854263

RESUMO

BACKGROUND: IL-6 is a pleiotropic cytokine which emerged recently as a key regulator of CD4 T cell function. IL-6 alone or in combination with other cytokines promotes T helper 1, T helper 17 and T follicular helper cell differentiation whilst inhibiting the induction of regulatory T cell generation. IL-6 activates multiple pathways among which JAK/STAT3 is the most clearly validated in the control of CD4 T helper differentiation. Activation of STAT5 by cytokines such as IL-2 can counteract IL-6-induced T helper 17 and T follicular helper cell differentiation and promote the induction of regulatory T cell generation. STAT5 and STAT3 are known to compete for promoter binding sites in CD4 T cells and the two transcription factors are believed to have opposite functions in the control of CD4 T cell differentiation. METHODS: We analyzed IL-6-induced STAT1, 3 and 5 activation by flow cytometry (phosflow) in mouse mononuclear cells and its effect on the level of the mRNA coding for cytokine-inducible SH2-containing protein (CIS). RESULTS: The results show that IL-6 also induces STAT5 activation in both CD4 and CD8 T as well as NK cells. Analysis of STAT5 phosphorylation in CD4 T cells indicates that it is transient and requires higher cytokine concentrations than that of STAT3. CD4 T cell stimulation with IL-6 induces the synthesis of CIS, which is encoded by a gene known to be regulated by STAT5. CONCLUSIONS: Thus, IL-6 at concentrations corresponding to levels observed in the serum during inflammation may activate, in CD4 T cells, a STAT5-negative feedback loop which alters the balance between STAT3-dependent pro-inflammatory helper T cells and STAT5-induced T regulatory cells. STAT5 activation may modulate the differentiation of T helper cells through attenuation of TGF-ß stability and production. Since STAT5 is directly activated by Janus kinases, therapeutic approaches designed to inhibit STAT3 activation or to recruit STAT3 phosphatases may be useful in altering the balance of activated STAT3 and STAT5 in favor a profile that would be beneficial in pathologies involving IL-6.


Assuntos
Interleucina-6/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Fator de Transcrição STAT5/metabolismo , Linfócitos T/metabolismo , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Interleucina-6/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Linfócitos T/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA