Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Act Health ; 20(7): 639-647, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37142406

RESUMO

BACKGROUND: Lockdown measures, including school closures, due to the COVID-19 pandemic have caused widespread disruption to children's lives. The aim of this study was to explore the impact of a national lockdown on children's physical activity using seasonally matched accelerometry data. METHODS: Using a pre/post observational design, 179 children aged 8 to 11 years provided physical activity data measured using hip-worn triaxial accelerometers worn for 5 consecutive days prepandemic and during the January to March 2021 lockdown. Multilevel regression analyses adjusted for covariates were used to assess the impact of lockdown on time spent in sedentary and moderate to vigorous physical activity. RESULTS: A 10.8-minute reduction in daily time spent in moderate to vigorous physical activity (standard error: 2.3 min/d, P < .001) and a 33.2-minute increase in daily sedentary activity (standard error: 5.5 min/d, P < .001) were observed during lockdown. This reflected a reduction in daily moderate to vigorous physical activity for those unable to attend school (-13.1 [2.3] min/d, P < .001) during lockdown, with no significant change for those who continued to attend school (0.4 [4.0] min/d, P < .925). CONCLUSION: These findings suggest that the loss of in-person schooling was the single largest impact on physical activity in this cohort of primary school children in London, Luton, and Dunstable, United Kingdom.


Assuntos
COVID-19 , Exercício Físico , Humanos , Criança , Estudos Longitudinais , Pandemias/prevenção & controle , Comportamento Sedentário , COVID-19/epidemiologia , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis , Instituições Acadêmicas , Acelerometria , Reino Unido/epidemiologia
2.
Diabetes ; 64(5): 1853-66, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25524916

RESUMO

Insulin sensitivity, insulin secretion, insulin clearance, and glucose effectiveness exhibit strong genetic components, although few studies have examined their genetic architecture or influence on type 2 diabetes (T2D) risk. We hypothesized that loci affecting variation in these quantitative traits influence T2D. We completed a multicohort genome-wide association study to search for loci influencing T2D-related quantitative traits in 4,176 Mexican Americans. Quantitative traits were measured by the frequently sampled intravenous glucose tolerance test (four cohorts) or euglycemic clamp (three cohorts), and random-effects models were used to test the association between loci and quantitative traits, adjusting for age, sex, and admixture proportions (Discovery). Analysis revealed a significant (P < 5.00 × 10(-8)) association at 11q14.3 (MTNR1B) with acute insulin response. Loci with P < 0.0001 among the quantitative traits were examined for translation to T2D risk in 6,463 T2D case and 9,232 control subjects of Mexican ancestry (Translation). Nonparametric meta-analysis of the Discovery and Translation cohorts identified significant associations at 6p24 (SLC35B3/TFAP2A) with glucose effectiveness/T2D, 11p15 (KCNQ1) with disposition index/T2D, and 6p22 (CDKAL1) and 11q14 (MTNR1B) with acute insulin response/T2D. These results suggest that T2D and insulin secretion and sensitivity have both shared and distinct genetic factors, potentially delineating genomic components of these quantitative traits that drive the risk for T2D.


Assuntos
Glicemia/genética , Diabetes Mellitus Tipo 2/metabolismo , Variação Genética , Homeostase/fisiologia , Glicemia/metabolismo , Bases de Dados Factuais , Diabetes Mellitus Tipo 2/etnologia , Regulação da Expressão Gênica/fisiologia , Genoma , Estudo de Associação Genômica Ampla , Genótipo , Hispânico ou Latino , Homeostase/genética , Humanos
3.
Atmos Environ (1994) ; 86: 84-92, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25313293

RESUMO

Emerging evidence indicates that near-roadway pollution (NRP) in ambient air has adverse health effects. However, specific components of the NRP mixture responsible for these effects have not been established. A major limitation for health studies is the lack of exposure models that estimate NRP components observed in epidemiological studies over fine spatial scale of tens to hundreds of meters. In this study, exposure models were developed for fine-scale variation in biologically relevant elemental carbon (EC). Measurements of particulate matter (PM) and EC less than 2.5 µm in aerodynamic diameter (EC2.5) and of PM and EC of nanoscale size less than 0.2 µm were made at up to 29 locations in each of eight Southern California Children's Health Study communities. Regression-based prediction models were developed using a guided forward selection process to identify traffic variables and other pollutant sources, community physical characteristics and land use as predictors of PM and EC variation in each community. A combined eight-community model including only CALINE4 near-roadway dispersion-estimated vehicular emissions accounting for distance, distance-weighted traffic volume, and meteorology, explained 51% of the EC0.2 variability. Community-specific models identified additional predictors in some communities; however, in most communities the correlation between predicted concentrations from the eight-community model and observed concentrations stratified by community were similar to those for the community-specific models. EC2.5 could be predicted as well as EC0.2. EC2.5 estimated from CALINE4 and population density explained 53% of the within-community variation. Exposure prediction was further improved after accounting for between-community heterogeneity of CALINE4 effects associated with average distance to Pacific Ocean shoreline (to 61% for EC0.2) and for regional NOx pollution (to 57% for EC2.5). PM fine spatial scale variation was poorly predicted in both size fractions. In conclusion, models of exposure that include traffic measures such as CALINE4 can provide useful estimates for EC0.2 and EC2.5 on a spatial scale appropriate for health studies of NRP in selected Southern California communities.

4.
Atmos Environ (1994) ; 83: 211-219, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24578605

RESUMO

To characterize exposures to particulate matter (PM) and its components, we performed a large sampling study of small-scale spatial variation in size-resolved particle mass and composition. PM was collected in size ranges of < 0.2, 0.2-to-2.5, and 2.5-to-10 µm on a scale of 100s to 1000s of meters to capture local sources. Within each of eight Southern California communities, up to 29 locations were sampled for rotating, month-long integrated periods at two different times of the year, six months apart, from Nov 2008 through Dec 2009. Additional sampling was conducted at each community's regional monitoring station to provide temporal coverage over the sampling campaign duration. Residential sampling locations were selected based on a novel design stratified by high- and low-predicted traffic emissions and locations over- and under-predicted from previous dispersion model and sampling comparisons. Primary vehicle emissions constituents, such as elemental carbon (EC), showed much stronger patterns of association with traffic than pollutants with significant secondary formation, such as PM2.5 or water soluble organic carbon. Associations were also stronger during cooler times of the year (Oct through Mar). Primary pollutants also showed greater within-community spatial variation compared to pollutants with secondary formation contributions. For example, the average cool-season community mean and standard deviation (SD) for EC were 1.1 and 0.17 µg/m3, respectively, giving a coefficient of variation (CV) of 18%. For PM2.5, average mean and SD were 14 and 1.3 µg/m3, respectively, with a CV of 9%. We conclude that within-community spatial differences are important for accurate exposure assessment of traffic-related pollutants.

5.
Int J Epidemiol ; 37(6): 1349-58, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18593748

RESUMO

BACKGROUND: The association of long-term air pollution and lung function has not been studied across adult European multi-national populations before. The aim of this study was to determine the association between long-term urban background air pollution and lung function levels, as well as change in lung function among European adults. METHODS: Forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and the ratio thereof (FEV1/FVC) were assessed at baseline and after 9 years of follow-up in adults from 21 European centres (followed-up sample 5610). Fine particles (PM(2.5)) were measured in 2000/2001 using central monitors. RESULTS: Despite sufficient statistical power no significant associations were found between city-specific annual mean PM(2.5) and average lung function levels. The findings also do not support an effect on change in lung function, albeit statistical power was insufficient to significantly detect such an association. CONCLUSIONS: The inability to refuse the null hypothesis may reflect (i) no effect of urban air pollution on lung function or (ii) inherent biases due to the study design. Examples of the latter are lack of individual-level air quality assignment, not quantified within-city contrasts in traffic-related pollution, or the heterogeneity of the studied populations and their urban environments. Future studies on long-term effects of air pollution on lung function could increase statistical power and reduce potential misclassification and confounding by characterizing exposure on the level of individuals, capturing contrasts due to local sources, in particular traffic.


Assuntos
Poluição do Ar/efeitos adversos , Pulmão/fisiologia , Adulto , Estudos Transversais , Europa (Continente) , Feminino , Seguimentos , Volume Expiratório Forçado , Inquéritos Epidemiológicos , Humanos , Modelos Logísticos , Masculino , Material Particulado , Fumar , População Urbana , Capacidade Vital
6.
Environ Health Perspect ; 114(5): 684-90, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16675421

RESUMO

OBJECTIVE: It has been proposed that the redox activity of particles may represent a major determinant of their toxicity. We measured the in vitro ability of ambient fine particles [particulate matter with aerodynamic diameters

Assuntos
Poluentes Atmosféricos/química , Luz , Estudos Transversais , Europa (Continente) , Oxirredução , Tamanho da Partícula , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA