Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Emerg Infect Dis ; 30(3): 560-563, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38407162

RESUMO

Analysis of genome sequencing data from >100,000 genomes of Mycobacterium tuberculosis complex using TB-Annotator software revealed a previously unknown lineage, proposed name L10, in central Africa. Phylogenetic reconstruction suggests L10 could represent a missing link in the evolutionary and geographic migration histories of M. africanum.


Assuntos
Evolução Biológica , Mycobacterium , Filogenia , Mycobacterium/genética , Software , África Central/epidemiologia
2.
Nat Commun ; 14(1): 7519, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980337

RESUMO

The Mycobacterium tuberculosis complex (MTBC) includes several human- and animal-adapted pathogens. It is thought to have originated in East Africa from a recombinogenic Mycobacterium canettii-like ancestral pool. Here, we describe the discovery of a clinical tuberculosis strain isolated in Ethiopia that shares archetypal phenotypic and genomic features of M. canettii strains, but represents a phylogenetic branch much closer to the MTBC clade than to the M. canettii strains. Analysis of genomic traces of horizontal gene transfer in this isolate and previously identified M. canettii strains indicates a persistent albeit decreased recombinogenic lifestyle near the emergence of the MTBC. Our findings support that the MTBC emergence from its putative free-living M. canettii-like progenitor is evolutionarily very recent, and suggest the existence of a continuum of further extant derivatives from ancestral stages, close to the root of the MTBC, along the Great Rift Valley.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Humanos , Filogenia , Etiópia , Tuberculose/microbiologia , África Oriental
3.
EBioMedicine ; 93: 104649, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37327675

RESUMO

BACKGROUND: Expansion of antimicrobial resistance monitoring and epidemiological surveillance are key components of the WHO strategy towards zero leprosy. The inability to grow Mycobacterium leprae in vitro precludes routine phenotypic drug susceptibility testing, and only limited molecular tests are available. We evaluated a culture-free targeted deep sequencing assay, for mycobacterial identification, genotyping based on 18 canonical SNPs and 11 core variable-number tandem-repeat (VNTR) markers, and detection of rifampicin, dapsone and fluoroquinolone resistance-associated mutations in rpoB/ctpC/ctpI, folP1, gyrA/gyrB, respectively, and hypermutation-associated mutations in nth. METHODS: The limit of detection (LOD) was determined using DNA of M. leprae reference strains and from 246 skin biopsies and 74 slit skin smears of leprosy patients, with genome copies quantified by RLEP qPCR. Sequencing results were evaluated versus whole genome sequencing (WGS) data of 14 strains, and versus VNTR-fragment length analysis (FLA) results of 89 clinical specimens. FINDINGS: The LOD for sequencing success ranged between 80 and 3000 genome copies, depending on the sample type. The LOD for minority variants was 10%. All SNPs detected in targets by WGS were identified except in a clinical sample where WGS revealed two dapsone resistance-conferring mutations instead of one by Deeplex Myc-Lep, due to partial duplication of the sulfamide-binding domain in folP1. SNPs detected uniquely by Deeplex Myc-Lep were missed by WGS due to insufficient coverage. Concordance with VNTR-FLA results was 99.4% (926/932 alleles). INTERPRETATION: Deeplex Myc-Lep may help improve the diagnosis and surveillance of leprosy. Gene domain duplication is an original putative drug resistance-related genetic adaptation in M. leprae. FUNDING: EDCTP2 programme supported by the European Union (grant number RIA2017NIM-1847 -PEOPLE). EDCTP, R2Stop: Effect:Hope, The Mission To End Leprosy, the Flemish Fonds Wetenschappelijk Onderzoek.


Assuntos
Hanseníase , Mycobacterium tuberculosis , Humanos , Mycobacterium leprae/genética , Testes de Sensibilidade Microbiana , Genótipo , Farmacorresistência Bacteriana/genética , Hanseníase/diagnóstico , Hanseníase/tratamento farmacológico , Hanseníase/epidemiologia , Dapsona , Biópsia , Resistência a Múltiplos Medicamentos
4.
iScience ; 26(4): 106411, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37091238

RESUMO

Tuberculosis (TB) is the historical leading cause of death by a single infectious agent. The European Regimen Accelerator for Tuberculosis (ERA4TB) is a public-private partnership of 30+ institutions with the objective to progress new anti-TB regimens into the clinic. Thus, robust and replicable results across independent laboratories are essential for reliable interpretation of treatment efficacy. A standardization workgroup unified in vitro protocols and data reporting templates. Time-kill assays provide essential input data for pharmacometric model-informed translation of single agents and regimens activity from in vitro to in vivo and the clinic. Five conditions were assessed by time-kill assays in six independent laboratories using four bacterial plating methods. Baseline bacterial burden varied between laboratories but variability was limited in net drug effect, confirming 2.5 µL equally robust as 100 µL plating. This exercise establishes the foundations of collaborative data generation, reporting, and integration within the overarching Antimicrobial Resistance Accelerator program.

5.
Nat Commun ; 13(1): 5105, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042200

RESUMO

Transmission-driven multi-/extensively drug resistant (M/XDR) tuberculosis (TB) is the largest single contributor to human mortality due to antimicrobial resistance. A few major clades of the Mycobacterium tuberculosis complex belonging to lineage 2, responsible for high prevalence of MDR-TB in Eurasia, show outstanding transnational distributions. Here, we determined factors underlying the emergence and epidemic spread of the W148 clade by genome sequencing and Bayesian demogenetic analyses of 720 isolates from 23 countries. We dated a common ancestor around 1963 and identified two successive epidemic expansions in the late 1980s and late 1990s, coinciding with major socio-economic changes in the post-Soviet Era. These population expansions favored accumulation of resistance mutations to up to 11 anti-TB drugs, with MDR evolving toward additional resistances to fluoroquinolones and second-line injectable drugs within 20 years on average. Timescaled haplotypic density analysis revealed that widespread acquisition of compensatory mutations was associated with transmission success of XDR strains. Virtually all W148 strains harbored a hypervirulence-associated ppe38 gene locus, and incipient recurrent emergence of prpR mutation-mediated drug tolerance was detected. The outstanding genetic arsenal of this geographically widespread M/XDR strain clade represents a "perfect storm" that jeopardizes the successful introduction of new anti-M/XDR-TB antibiotic regimens.


Assuntos
Tuberculose Extensivamente Resistente a Medicamentos , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Teorema de Bayes , Farmacorresistência Bacteriana Múltipla/genética , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/epidemiologia , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
6.
Nat Microbiol ; 6(8): 1082-1093, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34294904

RESUMO

Pathogenomic evidence suggests that Mycobacterium tuberculosis (MTB) evolved from an environmental ancestor similar to Mycobacterium canettii, a rare human pathogen. Although the adaptations responsible for this transition are poorly characterized, the ability to persist in humans seems to be important. We set out to identify the adaptations contributing to the evolution of persistence in MTB. We performed an experimental evolution of eight M. canettii populations in mice; four populations were derived from the isolate STB-K (phylogenomically furthest from MTB) and four from STB-D (closest to MTB), which were monitored for 15 and 6 cycles, respectively. We selected M. canettii mutants with enhanced persistence in vivo compared with the parental strains, which were phenotypically closer to MTB. Genome sequencing of 140 mutants and complementation analysis revealed that mutations in two loci were responsible for enhanced persistence. Most of the tested mutants were more resistant than their parental strains to nitric oxide, an important effector of immunity. Modern MTB were similarly more resistant to nitric oxide than M. canettii. Our findings demonstrate phenotypic convergence during experimental evolution of M. canettii, which mirrors natural evolution of MTB. Furthermore, they indicate that the ability to withstand host-induced stresses was key for the emergence of persistent MTB.


Assuntos
Evolução Biológica , Mycobacterium tuberculosis/fisiologia , Mycobacterium/fisiologia , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Mutação , Mycobacterium/genética , Mycobacterium tuberculosis/genética , Estresse Fisiológico , Tuberculose/microbiologia
7.
Microbiol Spectr ; 9(1): e0001921, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34287057

RESUMO

Antibiotic resistance is a global challenge for tuberculosis control, and accelerating its diagnosis is critical for therapy decisions and controlling transmission. Genotype-based molecular diagnostics now play an increasing role in accelerating the detection of such antibiotic resistance, but their accuracy depends on the instructed detection of genetic variations. Genetic mobile elements such as IS6110 are established sources of genetic variation in Mycobacterium tuberculosis, but their implication in clinical antibiotic resistance has thus far been unclear. Here, we describe the discovery of an intragenic IS6110 insertion into Rv0678 that caused antibiotic resistance in an in vitro-selected M. tuberculosis isolate. The subsequent development of bioinformatics scripts allowed genome-wide analysis of intragenic IS6110 insertions causing gene disruptions in 6,426 clinical M. tuberculosis strains. This analysis identified 10,070 intragenic IS6110 insertions distributed among 333 different genes. Focusing on genes whose disruption leads to antibiotic resistance, 12 clinical isolates were identified with high confidence to be resistant to bedaquiline, clofazimine, pyrazinamide, ethionamide, and para-aminosalicylic acid because of an IS6110-mediated gene disruption event. A number of these IS6110-mediated resistant strains had identical genomic distributions of IS6110 elements and likely represent transmission events of a single resistant isolate. These data provide strong evidence that IS6110-mediated gene disruption is a clinically relevant mechanism of antibiotic resistance in M. tuberculosis that should be considered for molecular diagnostics. Concomitantly, this analysis provides a list of 333 IS6110-disrupted genes in clinical tuberculosis isolates that can be deemed nonessential for human infection. IMPORTANCE To help control the spread of drug-resistant tuberculosis and to guide treatment choices, it is important that rapid and accurate molecular diagnostic tools are used. Current molecular diagnostic tools detect the most common antibiotic-resistance-conferring mutations in the form of single nucleotide changes, small deletions, or insertions. Mobile genetic elements, named IS6110, are also known to move within the M. tuberculosis genome and cause significant genetic variations, although the role of this variation in clinical drug resistance remains unclear. In this work, we show that both in vitro and in data analyzed from 6,426 clinical M. tuberculosis strains, IS6110 elements are found that disrupt specific genes essential for the function of a number of pivotal antituberculosis drugs. By providing ample evidence of clinically relevant IS6110-mediated drug resistance, we believe that this shows that this form of genetic variation must not be overlooked in molecular diagnostics of drug resistance.


Assuntos
Antituberculosos/farmacologia , Elementos de DNA Transponíveis , Farmacorresistência Bacteriana , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Clofazimina/farmacologia , Biologia Computacional , Etionamida/farmacologia , Humanos , Mutação , Mycobacterium tuberculosis/isolamento & purificação
8.
Eur Respir J ; 57(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32943401

RESUMO

Conventional molecular tests for detecting Mycobacterium tuberculosis complex (MTBC) drug resistance on clinical samples cover a limited set of mutations. Whole-genome sequencing (WGS) typically requires culture.Here, we evaluated the Deeplex Myc-TB targeted deep-sequencing assay for prediction of resistance to 13 anti-tuberculous drugs/drug classes, directly applicable on sputum.With MTBC DNA tests, the limit of detection was 100-1000 genome copies for fixed resistance mutations. Deeplex Myc-TB captured in silico 97.1-99.3% of resistance phenotypes correctly predicted by WGS from 3651 MTBC genomes. On 429 isolates, the assay predicted 92.2% of 2369 first- and second-line phenotypes, with a sensitivity of 95.3% and a specificity of 97.4%. 56 out of 69 (81.2%) residual discrepancies with phenotypic results involved pyrazinamide, ethambutol and ethionamide, and low-level rifampicin or isoniazid resistance mutations, all notoriously prone to phenotypic testing variability. Only two out of 91 (2.2%) resistance phenotypes undetected by Deeplex Myc-TB had known resistance-associated mutations by WGS analysis outside Deeplex Myc-TB targets. Phenotype predictions from Deeplex Myc-TB analysis directly on 109 sputa from a Djibouti survey matched those of MTBSeq/PhyResSE/Mykrobe, fed with WGS data from subsequent cultures, with a sensitivity of 93.5/98.5/93.1% and a specificity of 98.5/97.2/95.3%, respectively. Most residual discordances involved gene deletions/indels and 3-12% heteroresistant calls undetected by WGS analysis or natural pyrazinamide resistance of globally rare "Mycobacterium canettii" strains then unreported by Deeplex Myc-TB. On 1494 arduous sputa from a Democratic Republic of the Congo survey, 14 902 out of 19 422 (76.7%) possible susceptible or resistance phenotypes could be predicted culture-free.Deeplex Myc-TB may enable fast, tailored tuberculosis treatment.


Assuntos
Mycobacterium tuberculosis , Preparações Farmacêuticas , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/genética , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
9.
Nat Commun ; 11(1): 2917, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518235

RESUMO

The human- and animal-adapted lineages of the Mycobacterium tuberculosis complex (MTBC) are thought to have expanded from a common progenitor in Africa. However, the molecular events that accompanied this emergence remain largely unknown. Here, we describe two MTBC strains isolated from patients with multidrug resistant tuberculosis, representing an as-yet-unknown lineage, named Lineage 8 (L8), seemingly restricted to the African Great Lakes region. Using genome-based phylogenetic reconstruction, we show that L8 is a sister clade to the known MTBC lineages. Comparison with other complete mycobacterial genomes indicate that the divergence of L8 preceded the loss of the cobF genome region - involved in the cobalamin/vitamin B12 synthesis - and gene interruptions in a subsequent common ancestor shared by all other known MTBC lineages. This discovery further supports an East African origin for the MTBC and provides additional molecular clues on the ancestral genome reduction associated with adaptation to a pathogenic lifestyle.


Assuntos
Genoma Bacteriano , Mycobacterium tuberculosis/classificação , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Idoso , DNA Bacteriano/genética , Evolução Molecular , Variação Genética , Genômica , Genótipo , Humanos , Funções Verossimilhança , Limite de Detecção , Masculino , Mutação , Mycobacterium tuberculosis/isolamento & purificação , Fenótipo , Filogenia , Rifampina/farmacologia , Ruanda , Uganda
11.
J Clin Microbiol ; 57(11)2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31413081

RESUMO

Rifampin heteroresistance-where rifampin-resistant and -susceptible tuberculosis (TB) bacilli coexist-may result in failed standard TB treatment and potential spread of rifampin-resistant strains. The detection of rifampin heteroresistance in routine rapid diagnostic tests (RDTs) allows for patients to receive prompt and effective multidrug-resistant-TB treatment and may improve rifampin-resistant TB control. The limit of detection (LOD) of rifampin heteroresistance for phenotypic drug susceptibility testing by the proportion method is 1% and, yet, is insufficiently documented for RDTs. We, therefore, aimed to determine, for the four RDTs (XpertMTB/RIF, XpertMTB/RIF Ultra, GenoTypeMTBDRplusv2.0, and GenoscholarNTM+MDRTBII), the LOD per probe and mutation, validated by CFU counting and targeted deep sequencing (Deeplex-MycTB). We selected one rifampin-susceptible and four rifampin-resistant strains, with mutations D435V, H445D, H445Y, and S450L, respectively, mixed them in various proportions in triplicate, tested them with each RDT, and determined the LODs per mutation type. Deeplex-MycTB revealed concordant proportions of the minority resistant variants in the mixtures. The Deeplex-MycTB-validated LODs ranged from 20% to 80% for XpertMTB/RIF, 20% to 70% for Xpert Ultra, 5% to 10% for GenoTypeMTBDRplusv2.0, and 1% to 10% for GenoscholarNTM+MDRTBII for the different mutations. Deeplex-MycTB, GenoTypeMTBDRplusv2.0, and GenoscholarNTM+MDRTBII provide explicit information on rifampin heteroresistance for the most frequently detected mutations. Classic Xpert and Ultra report rifampin heteroresistance as rifampin resistance, while Ultra may denote rifampin heteroresistance through "mixed patterns" of wild-type and mutant melt probe, melt peak temperatures. Overall, our findings inform end users that the threshold for reporting resistance in the case of rifampin heteroresistance is the highest for Classic Xpert and Ultra to resolve phenotypic and genotypic discordant rifampin-resistant TB results.


Assuntos
Antibióticos Antituberculose/farmacologia , Farmacorresistência Bacteriana/genética , Técnicas de Diagnóstico Molecular/normas , Mycobacterium tuberculosis/efeitos dos fármacos , Rifampina/farmacologia , Proteínas de Bactérias/genética , Genótipo , Humanos , Limite de Detecção , Testes de Sensibilidade Microbiana , Técnicas de Diagnóstico Molecular/métodos , Mutação , Mycobacterium tuberculosis/genética , Kit de Reagentes para Diagnóstico/normas , Sensibilidade e Especificidade , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
12.
Emerg Infect Dis ; 25(3): 564-568, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30789124

RESUMO

In a 12-month nationwide study on the prevalence of drug-resistant tuberculosis (TB) in Lebanon, we identified 3 multidrug-resistant cases and 3 extensively drug-resistant TB cases in refugees, migrants, and 1 Lebanon resident. Enhanced diagnostics, particularly in major destinations for refugees, asylum seekers, and migrant workers, can inform treatment decisions and may help prevent the spread of drug-resistant TB.


Assuntos
Farmacorresistência Bacteriana Múltipla , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Adulto , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Feminino , Genes Bacterianos , Genótipo , História do Século XXI , Humanos , Líbano/epidemiologia , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Repetições Minissatélites , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/história , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Adulto Jovem
13.
Lancet Infect Dis ; 18(12): 1350-1359, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30342828

RESUMO

BACKGROUND: Global roll-out of rapid molecular assays is revolutionising the diagnosis of rifampicin resistance, predictive of multidrug-resistance, in tuberculosis. However, 30% of the multidrug-resistant (MDR) strains in an eSwatini study harboured the Ile491Phe mutation in the rpoB gene, which is associated with poor rifampicin-based treatment outcomes but is missed by commercial molecular assays or scored as susceptible by phenotypic drug-susceptibility testing deployed in South Africa. We evaluated the presence of Ile491Phe among South African tuberculosis isolates reported as isoniazid-monoresistant according to current national testing algorithms. METHODS: We screened records of 37 644 Mycobacterium tuberculosis positive cultures from four South African provinces, diagnosed at the National Health Laboratory Service-Dr George Mukhari Tertiary Laboratory, to identify isolates with rifampicin sensitivity and isoniazid resistance according to Xpert MTB/RIF, GenoType MTBDRplus, and BACTEC MGIT 960. Of 1823 isolates that met these criteria, 277 were randomly selected and screened for Ile491Phe with multiplex allele-specific PCR and Sanger sequencing of rpoB. Ile491Phe-positive strains (as well as 17 Ile491Phe-bearing isolates from the eSwatini study) were then tested by Deeplex-MycTB deep sequencing and whole-genome sequencing to evaluate their patterns of extensive resistance, transmission, and evolution. FINDINGS: Ile491Phe was identified in 37 (15%) of 249 samples with valid multiplex allele-specific PCR and sequencing results, thus reclassifying them as MDR. All 37 isolates were additionally identified as genotypically resistant to all first-line drugs by Deeplex-MycTB. Six of the South African isolates harboured four distinct mutations potentially associated with decreased bedaquiline sensitivity. Consistent with Deeplex-MycTB genotypic profiles, whole-genome sequencing revealed concurrent silent spread in South Africa of a MDR tuberculosis strain lineage extending from the eSwatini outbreak and at least another independently emerged Ile491Phe-bearing lineage. Whole-genome sequencing further suggested acquisition of mechanisms compensating for the Ile491Phe fitness cost, and of additional bedaquiline resistance following the introduction of this drug in South Africa. INTERPRETATION: A substantial number of MDR tuberculosis cases harbouring the Ile491Phe mutation in the rpoB gene in South Africa are missed by current diagnostic strategies, resulting in ineffective first-line treatment, continued amplification of drug resistance, and concurrent silent spread in the community. FUNDING: VLIR-UOS, National Research Foundation (South Africa), and INNOVIRIS.


Assuntos
Erros de Diagnóstico/estatística & dados numéricos , Surtos de Doenças , Técnicas de Genotipagem/métodos , Técnicas de Diagnóstico Molecular/métodos , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Adulto , RNA Polimerases Dirigidas por DNA/genética , Feminino , Frequência do Gene , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Mutantes/genética , Mutação de Sentido Incorreto , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Análise de Sequência de DNA , África do Sul/epidemiologia , Adulto Jovem
15.
Lancet Infect Dis ; 15(10): 1193-1202, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26116186

RESUMO

BACKGROUND: Diagnosing drug-resistance remains an obstacle to the elimination of tuberculosis. Phenotypic drug-susceptibility testing is slow and expensive, and commercial genotypic assays screen only common resistance-determining mutations. We used whole-genome sequencing to characterise common and rare mutations predicting drug resistance, or consistency with susceptibility, for all first-line and second-line drugs for tuberculosis. METHODS: Between Sept 1, 2010, and Dec 1, 2013, we sequenced a training set of 2099 Mycobacterium tuberculosis genomes. For 23 candidate genes identified from the drug-resistance scientific literature, we algorithmically characterised genetic mutations as not conferring resistance (benign), resistance determinants, or uncharacterised. We then assessed the ability of these characterisations to predict phenotypic drug-susceptibility testing for an independent validation set of 1552 genomes. We sought mutations under similar selection pressure to those characterised as resistance determinants outside candidate genes to account for residual phenotypic resistance. FINDINGS: We characterised 120 training-set mutations as resistance determining, and 772 as benign. With these mutations, we could predict 89·2% of the validation-set phenotypes with a mean 92·3% sensitivity (95% CI 90·7-93·7) and 98·4% specificity (98·1-98·7). 10·8% of validation-set phenotypes could not be predicted because uncharacterised mutations were present. With an in-silico comparison, characterised resistance determinants had higher sensitivity than the mutations from three line-probe assays (85·1% vs 81·6%). No additional resistance determinants were identified among mutations under selection pressure in non-candidate genes. INTERPRETATION: A broad catalogue of genetic mutations enable data from whole-genome sequencing to be used clinically to predict drug resistance, drug susceptibility, or to identify drug phenotypes that cannot yet be genetically predicted. This approach could be integrated into routine diagnostic workflows, phasing out phenotypic drug-susceptibility testing while reporting drug resistance early. FUNDING: Wellcome Trust, National Institute of Health Research, Medical Research Council, and the European Union.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana , Técnicas de Genotipagem/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Análise de Sequência de DNA/métodos , Humanos , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/isolamento & purificação , Estudos Retrospectivos , Tuberculose/microbiologia
17.
Mol Endocrinol ; 28(2): 260-72, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24422634

RESUMO

Retinoic acid (RA) controls many aspects of embryonic development by binding to specific receptors (retinoic acid receptors [RARs]) that regulate complex transcriptional networks. Three different RAR subtypes are present in vertebrates and play both common and specific roles in transducing RA signaling. Specific activities of each receptor subtype can be correlated with its exclusive expression pattern, whereas shared activities between different subtypes are generally assimilated to functional redundancy. However, the question remains whether some subtype-specific activity still exists in regions or organs coexpressing multiple RAR subtypes. We tackled this issue at the transcriptional level using early zebrafish embryo as a model. Using morpholino knockdown, we specifically invalidated the zebrafish endogenous RAR subtypes in an in vivo context. After building up a list of RA-responsive genes in the zebrafish gastrula through a whole-transcriptome analysis, we compared this panel of genes with those that still respond to RA in embryos lacking one or another RAR subtype. Our work reveals that RAR subtypes do not have fully redundant functions at the transcriptional level but can transduce RA signal in a subtype-specific fashion. As a result, we define RAR subtype-specific transcriptotypes that correspond to repertoires of genes activated by different RAR subtypes. Finally, we found genes of the RA pathway (cyp26a1, raraa) the regulation of which by RA is highly robust and can even resist the knockdown of all RARs. This suggests that RA-responsive genes are differentially sensitive to alterations in the RA pathway and, in particular, cyp26a1 and raraa are under a high pressure to maintain signaling integrity.


Assuntos
Gástrula/metabolismo , Receptores do Ácido Retinoico/metabolismo , Peixe-Zebra/genética , Animais , Sequência de Bases , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores do Ácido Retinoico/antagonistas & inibidores , Receptores do Ácido Retinoico/genética , Ácido Retinoico 4 Hidroxilase , Transdução de Sinais , Transcrição Gênica , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra
18.
J Virol ; 85(14): 7449-53, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21561912

RESUMO

Arterivirus replicase polyproteins are cleaved into at least 13 mature nonstructural proteins (nsps), and in particular the nsp5-to-nsp8 region is subject to a complex processing cascade. The function of the largest subunit from this region, nsp7, which is further cleaved into nsp7α and nsp7ß, is unknown. Using nuclear magnetic resonance (NMR) spectroscopy, we determined the solution structure of nsp7α of equine arteritis virus, revealing an interesting unique fold for this protein but thereby providing little clue to its possible functions. Nevertheless, structure-based reverse genetics studies established the importance of nsp7/nsp7α for viral RNA synthesis, thus providing a basis for future studies.


Assuntos
Arterivirus/genética , Proteínas não Estruturais Virais/genética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular
19.
Biomol NMR Assign ; 5(1): 23-5, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20703834

RESUMO

The (1)H, (15)N and (13)C resonance assignment of nsp7α, a non-structural protein of unknown function from the equine arteritis virus, is reported.


Assuntos
Equartevirus/química , Ressonância Magnética Nuclear Biomolecular , Proteínas Virais/química , Animais , Cavalos
20.
Biochimie ; 89(10): 1204-10, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17383790

RESUMO

HIV-1 reverse transcriptase uses the host tRNA3(Lys) as a primer for the synthesis of the minus DNA strand. The first event in viral replication is thus the annealing of tRNA to the primer binding site (PBS) in the 5' UTR of the viral RNA. This event requires a major RNA rearrangement which is chaperoned by the viral NC protein. The binding of NC to nucleic acids is essentially non-specific, however, NC is known to bind selectively to hairpins located in the 5' region of the viral RNA. In a previous study, using an NMR approach in which the reaction is slowed down by controlling temperature, we were able to follow details in this RNA unfolding/refolding process and to uncover an intermediate state. We showed that annealing initiates at the junction between the acceptor and the TPsiC stems, and that, at physiological temperature, complete annealing is reached only in the presence of NC, probably when the zinc fingers contact the TPsiC/D loops. In the present work, we have refined our model of the formation of the tRNA3(Lys)/PBS duplex. First, we show that annealing can initiate both from the single-stranded CCA 3'-end bases of the acceptor stem and from the bases in the TPsiC stem. Secondly, by NMR and fluorescence spectroscopy, we have studied the complex between the NC protein and RNA hairpins that mimic the D and T arms of the tRNA3(Lys). Interestingly, the NC protein shows strong and specific binding to the D arm of tRNA3(Lys), which could explain the overall annealing mechanism.


Assuntos
HIV-1/genética , Transcrição Reversa/genética , Sequência de Bases , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/metabolismo , RNA de Transferência de Lisina/química , RNA de Transferência de Lisina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA