Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 7(4): 559-575, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36266536

RESUMO

Electrical neurostimulation is effective in the treatment of neurological disorders, but associated recording artefacts generally limit its applications to open-loop stimuli. Real-time and continuous closed-loop control of brain activity can, however, be achieved by pairing concurrent electrical recordings and optogenetics. Here we show that closed-loop optogenetic stimulation with excitatory opsins enables the precise manipulation of neural dynamics in brain slices from transgenic mice and in anaesthetized non-human primates. The approach generates oscillations in quiescent tissue, enhances or suppresses endogenous patterns in active tissue and modulates seizure-like bursts elicited by the convulsant 4-aminopyridine. A nonlinear model of the phase-dependent effects of optical stimulation reproduced the modulation of cycles of local-field potentials associated with seizure oscillations, as evidenced by the systematic changes in the variability and entropy of the phase-space trajectories of seizures, which correlated with changes in their duration and intensity. We also show that closed-loop optogenetic neurostimulation could be delivered using intracortical optrodes incorporating light-emitting diodes. Closed-loop optogenetic approaches may be translatable to therapeutic applications in humans.


Assuntos
Optogenética , Convulsões , Camundongos , Animais , Camundongos Transgênicos , Primatas , Encéfalo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA