Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Biomed Opt Express ; 15(2): 863-874, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38404353

RESUMO

Phantoms simultaneously mimicking anatomical and optical properties of real tissues can play a pivotal role for improving dosimetry algorithms. The aim of the paper is to design and develop a hybrid phantom model that builds up on the strengths of solid and liquid phantoms for mimicking various anatomical structures for prostate cancer photodynamic therapy (PDT) dosimetry validation. The model comprises of a photosensitizer-embedded gelatin lesion within a liquid Intralipid prostate shape that is surrounded by a solid silicone outer shell. The hybrid phantom was well characterized for optical properties. The final assembled phantom was also evaluated for fluorescence tomographic reconstruction in conjunction with SpectraCure's IDOSE software. The developed model can lead to advancements in dosimetric evaluations. This would improve PDT outlook as a clinical treatment modality and boost phantom based standardization of biophotonic devices globally.

2.
Analyst ; 148(19): 4768-4776, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37665320

RESUMO

Rapid advancement of novel optical spectroscopy and imaging systems relies on the availability of well-characterised and reproducible protocols for phantoms as a standard for the validation of the technique. The tissue-mimicking phantoms are also used to investigate photon transport in biological samples before clinical trials that require well-characterized phantoms with known optical properties (reduced scattering (µ's) and absorption (µa) coefficients). However, at present, there is limited literature available providing well-characterized phantom recipes considering various biomarkers and tested over a wide range of optical properties covering most of the human organs and applicable to multimodal optical spectroscopy. In this study, gelatin-based phantoms were designed to simulate tissue optical properties where India ink and Intralipid were used as absorbing and scattering agents, respectively. Multiple biomarkers were simulated by varying the gelatin concentration to mimic the change in tissue hydration and hydroxyapatite concentration to mimic bone signature. The recipe along with biomarkers were optimized and characterised over a wide range of optical properties (µa from 0.1 to 0.5 cm-1; µ's from 5 to 15 cm-1) relevant to human tissue using a broadband time-domain diffuse optical spectrometer. The data collected showed a linear relationship between the concentration of ink/lipids and µa/µ's values with negligible coupling between µa and µ's values. While being stored in a refrigerator post-fabrication, the µa and µ's did not change significantly (<4% coefficient of variation, 'CV') over three weeks. The reproducibility in three different sets was validated experimentally and found to be strong with a variation of ≤6% CV in µa and ≤9% CV in µ's. From the 3 × 3 data of µa and µ's matrices, one can deduce the recipe for any target absorption or reduced scattering coefficient. The applicability of the phantoms was tested using diffuse reflectance and Raman spectrometers. A use case application was demonstrated for Raman spectroscopy where hydration and hydroxyapatite phantoms were designed to characterize the Raman instrument. The Raman instrument could detect the change in 1% of HA and 5% of hydration. This study presents a first-of-its-kind robust, well-characterized, multi-biomarker phantom recipe for calibration and benchmarking of multimodal spectroscopy devices assisting in their clinical translation.


Assuntos
Gelatina , Análise Espectral Raman , Humanos , Reprodutibilidade dos Testes , Biomarcadores , Durapatita
3.
Analyst ; 148(19): 4799-4809, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37602820

RESUMO

The fracture resistance of bone arises from the hierarchical arrangement of minerals, collagen fibrils (i.e., cross-linked triple helices of α1 and α2 collagen I chains), non-collagenous proteins, and water. Raman spectroscopy (RS) is not only sensitive to the relative fractions of these constituents, but also to the secondary structure of bone proteins. To assess the ability of RS to detect differences in the protein structure, we quantified the effect of sequentially autoclaving (AC) human cortical bone at 100 °C (∼34.47 kPa) and then at 120 °C (∼117.21 kPa) on the amide I band using a commercial Raman micro-spectroscopy (µRS) instrument and custom spatially offset RS (SORS) instrument in which rings of collection fiber optics are offset from the central excitation fiber optics within a hand-held, cylindrical probe. Being clinically viable, measurements by SORS involved collecting Raman spectra of cadaveric femur mid-shafts (5 male & 5 female donors) through layers of a tissue mimic. Otherwise, µRS and SORS measurements were acquired directly from each bone. AC-related changes in the helical status of collagen I were assessed using amide I sub-peak ratios (intensity, I, at ∼1670 cm-1 relative to intensities at ∼1610 cm-1 and ∼1640 cm-1). The autoclaving manipulation significantly decreased the selected amide I sub-peak ratios as well as shifted peaks at ∼1605 cm-1 (µRS), ∼1636 cm-1 (SORS) and ∼1667 cm-1 in both µRS and SORS. Compared to µRS, SORS detected more significant differences in the amide I sub-peak ratios when the fiber optic probe was directly applied to bone. SORS also detected AC-related decreases in I1670/I1610 and I1670/I1640 when spectra were acquired through layers of the tissue mimic with a thickness ≤2 mm by the 7 mm offset ring, but not with the 5 mm or 6 mm offset ring. Overall, the SORS instrument was more sensitive than the conventional µRS instrument to pressure- and temperature-related changes in the organic matrix that affect the fracture resistance of bone, but SORS analysis of the amide I band is limited to an overlying thickness layer of 2 mm.


Assuntos
Osso e Ossos , Análise Espectral Raman , Humanos , Masculino , Feminino , Análise Espectral Raman/métodos , Osso Cortical , Tecnologia de Fibra Óptica , Colágeno
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123240, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37591015

RESUMO

Since spatially offset Raman spectroscopy (SORS) can acquire biochemical measurements of tissue quality through light scattering materials, we investigated the feasibility of this technique to acquire Raman bands related to the fracture resistance of bone. Designed to maximize signals at different offsets, a SORS probe was used to acquire spectra from cadaveric bone with and without skin-like tissue phantoms attenuating the light. Autoclaving the lateral side of femur mid-shafts from 5 female and 5 male donors at 100 °C and again at 120 °C reduced the yield stress of cortical beams subjected to three-point bending. It did not affect the volumetric bone mineral density or porosity. Without tissue phantoms, autoclaving affected more Raman characteristics of the organic matrix when determined by peak intensity ratios, but fewer matrix properties depended on the three offsets (5 mm, 6 mm, and 7 mm) when determined by band area ratios. The cut-off in the thickness of the tissue phantom layers was ∼4 mm for most properties, irrespective of offset. Matching trends when spectra were acquired without phantom layers between bone and the probe, ν1PO43-/Amide III and ν1PO43-/(proline + OH-proline) were higher and lower in the non-treated bone than in the autoclaved bone, respectively, when the thickness of tissue phantom layers was 4 mm. The layers, however, caused a loss of sensitivity to autoclaving-related changes in ν3CO3/ν1PO43- and crystallinity. Without advanced post-processing of Raman spectra, SORS acquisition through turbid layers can detect changes in Raman properties of bone that accompany a loss in bone strength.


Assuntos
Matriz Óssea , Análise Espectral Raman , Humanos , Feminino , Masculino , Amidas , Densidade Óssea , Prolina
5.
Analyst ; 148(7): 1514-1523, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36896767

RESUMO

Early diagnosis of oral cancer is critical to improve the survival rate of patients. Raman spectroscopy, a non-invasive spectroscopic technique, has shown potential in identifying early-stage oral cancer biomarkers in the oral cavity environment. However, inherently weak signals necessitate highly sensitive detectors, which restricts widespread usage due to high setup costs. In this research, the fabrication and assembly of a customised Raman system that can adapt three different configurations for the in vivo and ex vivo analysis is reported. This novel design will help in reducing the cost required to have multiple Raman instruments specific for a given application. First, we demonstrated the capability of a customized microscope for acquiring Raman signals from a single cell with high signal-to-noise ratio. Generally, when working with liquid samples with low concentration of analytes (such as saliva) under a microscope, excitation light interacts with a small sample volume, which may not be representative of whole sample. To address this issue, we have designed a novel long-path transmission set-up, which was found to be sensitive towards low concentration of analytes in aqueous solution. We further demonstrated that the same Raman system can be incorporated with the multimodal fibre optical probe to collect in vivo data from oral tissues. In summary, this flexible, portable, multi-configuration Raman system has the potential to provide a cost-effective solution for complete screening of precancer oral lesions.


Assuntos
Neoplasias Bucais , Humanos , Neoplasias Bucais/diagnóstico , Razão Sinal-Ruído , Análise Espectral Raman/métodos , Microscopia
6.
Anal Methods ; 15(9): 1188-1205, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36799369

RESUMO

Biochemical insights into varying breast cancer (BC) phenotypes can provide a fundamental understanding of BC pathogenesis, while identifying novel therapeutic targets. Raman spectroscopy (RS) can gauge these biochemical differences with high specificity. For routine RS, cells are traditionally seeded onto calcium fluoride (CaF2) substrates that are costly and fragile, limiting its widespread adoption. Stainless steel has been interrogated previously as a less expensive alternative to CaF2 substrates, while reporting increased Raman signal intensity than the latter. We sought to further investigate and compare the Raman signal quality measured from stainless steel versus CaF2 substrates by characterizing different BC phenotypes with altered human epidermal growth factor receptor 2 (HER2) expression. Raman spectra were obtained on stainless steel and CaF2 substrates for HER2 negative cells - MDA-MB-231, MDA-MB-468 and HER2 overexpressing cells - AU565, SKBr3. Upon analyzing signal-to-noise ratios (SNR), stainless steel provided a stronger Raman signal, improving SNR by 119% at 1450 cm-1 and 122% at 2925 cm-1 on average compared to the CaF2 substrate. Utilizing only 22% of laser power on sample relative to the CaF2 substrate, stainless steel still yielded improved spectral characterization over CaF2, achieving 96.0% versus 89.8% accuracy in BC phenotype discrimination and equivalent 100.0% accuracy in HER2 status classification. Spectral analysis further highlighted increased lipogenesis and altered metabolism in HER2 overexpressing cells, which was subsequently visualized with coherent anti-Stokes Raman scattering microscopy. Our findings demonstrate that stainless steel substrates deliver improved Raman signal and enhanced spectral characterization, underscoring its potential as a cost-effective alternative to CaF2 for non-invasively monitoring cellular biochemical dynamics in translational cancer research.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Análise Espectral Raman , Aço Inoxidável/química , Lasers , Fenótipo
7.
Diagnostics (Basel) ; 12(12)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36552903

RESUMO

Oral cancer is the 16th most common cancer worldwide. It commonly arises from painless white or red plaques within the oral cavity. Clinical outcome is highly related to the stage when diagnosed. However, early diagnosis is complex owing to the impracticality of biopsying every potentially premalignant intraoral lesion. Therefore, there is a need to develop a non-invasive cost-effective diagnostic technique to differentiate non-malignant and early-stage malignant lesions. Optical spectroscopy may provide an appropriate solution to facilitate early detection of these lesions. It has many advantages over traditional approaches including cost, speed, objectivity, sensitivity, painlessness, and ease-of use in clinical setting for real-time diagnosis. This review consists of a comprehensive overview of optical spectroscopy for oral cancer diagnosis, epidemiology, and recent improvements in this field for diagnostic purposes. It summarizes major developments in label-free optical spectroscopy, including Raman, fluorescence, and diffuse reflectance spectroscopy during recent years. Among the wide range of optical techniques available, we chose these three for this review because they have the ability to provide biochemical information and show great potential for real-time deep-tissue point-based in vivo analysis. This review also highlights the importance of saliva-based potential biomarkers for non-invasive early-stage diagnosis. It concludes with the discussion on the scope of development and future demands from a clinical point of view.

8.
Biophys J ; 121(8): 1525-1540, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35276133

RESUMO

Infrared neural stimulation (INS) uses pulsed infrared light to yield label-free neural stimulation with broad experimental and translational utility. Despite its robust demonstration, INS's mechanistic and biophysical underpinnings have been the subject of debate for more than a decade. The role of lipid membrane thermodynamics appears to play an important role in how fast IR-mediated heating nonspecifically drives action potential generation. Direct observation of lipid membrane dynamics during INS remains to be shown in a live neural model system. We used hyperspectral stimulated Raman scattering microscopy to study biochemical signatures of high-speed vibrational dynamics underlying INS in a live neural cell culture model. The findings suggest that lipid bilayer structural changes occur during INS in vitro in NG108-15 neuroglioma cells. Lipid-specific signatures of cell stimulated Raman scattering spectra varied with stimulation energy and radiation exposure. The spectroscopic observations agree with high-speed ratiometric fluorescence imaging of a conventional lipophilic membrane structure reporter, 4-(2-(6-(dibutylamino)-2-naphthalenyl)ethenyl)-1-(3-sulfopropyl)pyridinium hydroxide. The findings support the hypothesis that INS causes changes in the lipid membrane of neural cells by changing the lipid membrane packing order. This work highlights the potential of hyperspectral stimulated Raman scattering as a method to safely study biophysical and biochemical dynamics in live cells.


Assuntos
Microscopia Óptica não Linear , Análise Espectral Raman , Bicamadas Lipídicas , Imagem Óptica , Análise Espectral Raman/métodos , Vibração
9.
Am J Obstet Gynecol ; 227(2): 275.e1-275.e14, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35189092

RESUMO

BACKGROUND: Biochemical cervical change during labor is not well understood, in part, because of a dearth of technologies capable of safely probing the pregnant cervix in vivo. The need for such a technology is 2-fold: (1) to gain a mechanistic understanding of the cervical ripening and dilation process and (2) to provide an objective method for evaluating the cervical state to guide clinical decision-making. Raman spectroscopy demonstrates the potential to meet this need, as it is a noninvasive optical technique that can sensitively detect alterations in tissue components, such as extracellular matrix proteins, lipids, nucleic acids, and blood, which have been previously established to change during the cervical remodeling process. OBJECTIVE: We sought to demonstrate that Raman spectroscopy can longitudinally monitor biochemical changes in the laboring cervix to identify spectral markers of impending parturition. STUDY DESIGN: Overall, 30 pregnant participants undergoing either spontaneous or induced labor were recruited. The Raman spectra were acquired in vivo at 4-hour intervals throughout labor until rupture of membranes using a Raman system with a fiber-optic probe. Linear mixed-effects models were used to determine significant (P<.05) changes in peak intensities or peak ratios as a function of time to delivery in the study population. A nonnegative least-squares biochemical model was used to extract the changing contributions of specific molecule classes over time. RESULTS: We detected multiple biochemical changes during labor, including (1) significant decreases in Raman spectral features associated with collagen and other extracellular matrix proteins (P=.0054) attributed to collagen dispersion, (2) an increase in spectral features associated with blood (P=.0372), and (3) an increase in features indicative of lipid-based molecules (P=.0273). The nonnegative least-squares model revealed a decrease in collagen contribution with time to delivery, an increase in blood contribution, and a change in lipid contribution. CONCLUSION: Our findings have demonstrated that in vivo Raman spectroscopy is sensitive to multiple biochemical remodeling changes in the cervix during labor. Furthermore, in vivo Raman spectroscopy may be a valuable noninvasive tool for objectively evaluating the cervix to potentially guide clinical management of labor.


Assuntos
Colo do Útero , Análise Espectral Raman , Maturidade Cervical , Colo do Útero/diagnóstico por imagem , Colágeno/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Humanos , Lipídeos , Gravidez , Análise Espectral Raman/métodos
10.
Am J Surg ; 222(5): 944-951, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34024629

RESUMO

BACKGROUND: Near infrared autofluorescence (NIRAF) detection has previously demonstrated significant potential for real-time parathyroid gland identification. However, the performance of a NIRAF detection device - PTeye® - remains to be evaluated relative to a surgeon's own ability to identify parathyroid glands. METHODS: Patients eligible for thyroidectomy and/or parathyroidectomy were enrolled under 6 endocrine surgeons at 3 high-volume institutions. Participating surgeons were categorized based on years of experience. All surgeons were blinded to output of PTeye® when identifying tissues. The surgeon's performance for parathyroid discrimination was then compared with PTeye®. Histology served as gold standard for excised specimens, while expert surgeon's opinion was used to validate in-situ tissues. RESULTS: PTeye® achieved 92.7% accuracy across 167 patients recruited. Junior surgeons (<5 years of experience) were found to have lower confidence in parathyroid identification and higher tissue misclassification rate per specimen when compared to PTeye® and senior surgeons (>10 years of experience). CONCLUSIONS: NIRAF detection with PTeye® can be a valuable intraoperative adjunct technology to aid in parathyroid identification for surgeons.


Assuntos
Período Intraoperatório , Imagem Óptica/métodos , Glândulas Paratireoides/anatomia & histologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Competência Clínica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Glândulas Paratireoides/diagnóstico por imagem , Glândulas Paratireoides/cirurgia , Espectroscopia de Luz Próxima ao Infravermelho , Adulto Jovem
11.
Sci Rep ; 11(1): 8067, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850171

RESUMO

The ability to characterize the combined structural, functional, and thermal properties of biophysically dynamic samples is needed to address critical questions related to tissue structure, physiological dynamics, and disease progression. Towards this, we have developed an imaging platform that enables multiple nonlinear imaging modalities to be combined with thermal imaging on a common sample. Here we demonstrate label-free multimodal imaging of live cells, excised tissues, and live rodent brain models. While potential applications of this technology are wide-ranging, we expect it to be especially useful in addressing biomedical research questions aimed at the biomolecular and biophysical properties of tissue and their physiology.


Assuntos
Imagem Multimodal , Imagem Óptica , Humanos
12.
Circulation ; 143(13): 1317-1330, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33474971

RESUMO

BACKGROUND: Myocardial infarction (MI) induces an intense injury response that ultimately generates a collagen-dominated scar. Although required to prevent ventricular rupture, the fibrotic process is often sustained in a manner detrimental to optimal recovery. Cardiac myofibroblasts are the cells tasked with depositing and remodeling collagen and are a prime target to limit the fibrotic process after MI. Serotonin 2B receptor (5-HT2B) signaling has been shown to be harmful in a variety of cardiopulmonary pathologies and could play an important role in mediating scar formation after MI. METHODS: We used 2 pharmacological antagonists to explore the effect of 5-HT2B inhibition on outcomes after MI and characterized the histological and microstructural changes involved in tissue remodeling. Inducible 5-HT2B ablation driven by Tcf21MCM and PostnMCM was used to evaluate resident cardiac fibroblast- and myofibroblast-specific contributions of 5-HT2B, respectively. RNA sequencing was used to motivate subsequent in vitro analyses to explore cardiac fibroblast phenotype. RESULTS: 5-HT2B antagonism preserved cardiac structure and function by facilitating a less fibrotic scar, indicated by decreased scar thickness and decreased border zone area. 5-HT2B antagonism resulted in collagen fiber redistribution to thinner collagen fibers that were more anisotropic, enhancing left ventricular contractility, whereas fibrotic tissue stiffness was decreased, limiting the hypertrophic response of uninjured cardiomyocytes. Using a tamoxifen-inducible Cre, we ablated 5-HT2B from Tcf21-lineage resident cardiac fibroblasts and saw similar improvements to the pharmacological approach. Tamoxifen-inducible Cre-mediated ablation of 5-HT2B after onset of injury in Postn-lineage myofibroblasts also improved cardiac outcomes. RNA sequencing and subsequent in vitro analyses corroborate a decrease in fibroblast proliferation, migration, and remodeling capabilities through alterations in Dnajb4 expression and Src phosphorylation. CONCLUSIONS: Together, our findings illustrate that 5-HT2B expression in either cardiac fibroblasts or activated myofibroblasts directly contributes to excessive scar formation, resulting in adverse remodeling and impaired cardiac function after MI.


Assuntos
Fibrose/tratamento farmacológico , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/fisiopatologia , Antagonistas do Receptor 5-HT2 de Serotonina/uso terapêutico , Animais , Feminino , Humanos , Camundongos , Camundongos Knockout , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Transdução de Sinais
13.
Clin Transl Gastroenterol ; 11(7): e00195, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32764208

RESUMO

INTRODUCTION: Elucidating esophageal biochemical composition in eosinophilic esophagitis (EoE) can offer novel insights into its pathogenesis, which remains unclear. Using Raman spectroscopy, we profiled and compared the biochemical composition of esophageal samples obtained from children with active (aEoE) and inactive EoE (iEoE) with non-EoE controls, examined the relationship between spectral markers and validated EoE activity indices. METHODS: In vitro Raman spectra from children with aEoE (n = 8; spectra = 51) and iEoE (n = 6; spectra = 48) and from non-EoE controls (n = 10; spectra = 75) were acquired. Mann-Whitney test was used to assess the differences in their Raman intensities (median [interquartile range]) and identify spectral markers. Spearman correlation was used to evaluate the relationship between spectral markers and endoscopic and histologic activity indices. RESULTS: Raman peaks attributable to glycogen content (936/1,449 cm) was lower in children with aEoE (0.20 [0.18-0.21]) compared with that in non-EoE controls (0.24 [0.23-0.29]). Raman intensity of proteins (1,660/1,209 cm) was higher in children with aEoE compared with that in non-EoE controls (3.20 [3.07-3.50] vs 2.91 [2.59-3.05]; P = 0.01), whereas that of lipids (1,301/1,260 cm) was higher in children with iEoE (1.56 [1.49-1.63]) compared with children with aEoE (1.40 [1.30-1.48]; P = 0.02). Raman peaks attributable to glycogen and lipid inversely correlated with eosinophilic inflammation and basal zone hyperplasia. Raman mapping substantiated our findings. DISCUSSION: This is the first study to identify spectral traits of the esophageal samples related to EoE activity and tissue pathology and to profile tissue-level biochemical composition associated with pediatric EoE. Future research to determine the role of these biochemical alterations in development and clinical course of EoE can advance our understanding of EoE pathobiology.


Assuntos
Esofagite Eosinofílica/diagnóstico , Eosinófilos/imunologia , Mucosa Esofágica/patologia , Esofagoscopia/métodos , Análise Espectral Raman , Adolescente , Biópsia , Criança , Esofagite Eosinofílica/imunologia , Esofagite Eosinofílica/patologia , Mucosa Esofágica/citologia , Mucosa Esofágica/diagnóstico por imagem , Mucosa Esofágica/imunologia , Feminino , Humanos , Masculino , Estudos Prospectivos
14.
Appl Spectrosc ; 74(10): 1238-1251, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32519560

RESUMO

Establishing the precise timeline of a crime can be challenging as current analytical techniques used suffer from many limitations and are destructive to the body fluids encountered at crime scenes. Raman spectroscopy has demonstrated excellent potential in forensic science as it provides direct information about the structural and molecular changes without the need for processing or extracting samples. However, its current applicability is limited to pure body fluids, as signals from the substrate underlying these fluids greatly influence the current models used for age estimation. In this study, we utilized Raman spectroscopy to identify selective spectral markers that delineate the bloodstain age in the presence of interfering signals from the substrate. The pure bloodstains and the bloodstains on the substrate were aged for two weeks at 21 ± 2 ℃ in the dark. Least absolute shrinkage and selection operator (LASSO) regression was employed to guide the feature selection in the presence of interference from substrates to accurately predict the bloodstain age. Substrate-specific regression models guided by an automated feature selection algorithm yielded low values of predictive root mean square error (0.207, 0.204, 0.222 h in logarithmic scale) and high R2 (0.924, 0.926, 0.913) on test data consisting of blood spectra on floor tile, facial tissue, and linoleum-polymer substrates, respectively. This framework for an automated feature selection algorithm relies entirely on pure bloodstain spectra to train substrate-specific models for estimating the age of composite (blood on substrate) spectra. The model can thus be easily applied to any new composite spectra and is highly scalable to new environments. This study demonstrates that Raman spectroscopy coupled with LASSO could serve as a reliable and nondestructive technique to determine the age of bloodstains on any surface while aiding forensic investigations in real-world scenarios.


Assuntos
Análise Química do Sangue/métodos , Manchas de Sangue , Análise Espectral Raman/métodos , Feminino , Humanos , Masculino
15.
Light Sci Appl ; 8: 31, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30886708

RESUMO

Osmotic conditions play an important role in the cell properties of human red blood cells (RBCs), which are crucial for the pathological analysis of some blood diseases such as malaria. Over the past decades, numerous efforts have mainly focused on the study of the RBC biomechanical properties that arise from the unique deformability of erythrocytes. Here, we demonstrate nonlinear optical effects from human RBCs suspended in different osmotic solutions. Specifically, we observe self-trapping and scattering-resistant nonlinear propagation of a laser beam through RBC suspensions under all three osmotic conditions, where the strength of the optical nonlinearity increases with osmotic pressure on the cells. This tunable nonlinearity is attributed to optical forces, particularly the forward-scattering and gradient forces. Interestingly, in aged blood samples (with lysed cells), a notably different nonlinear behavior is observed due to the presence of free hemoglobin. We use a theoretical model with an optical force-mediated nonlocal nonlinearity to explain the experimental observations. Our work on light self-guiding through scattering bio-soft-matter may introduce new photonic tools for noninvasive biomedical imaging and medical diagnosis.

16.
Analyst ; 143(24): 5950-5958, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30035796

RESUMO

A method to acquire the Raman spectra of sub-surface components using diffusely focused radiation in a microscope sampling configuration is described. This procedure generates Raman scattering at various sample depths by producing a converging beam at the back aperture of the objective lens. This method requires illumination of the sample with a defocused laser, while simultaneously increasing the number of CCD pixels that are binned along the spatial axis of the detector. We applied this diffuse sampling method to the analysis of stored red blood cells (RBCs). During storage, biochemical changes to RBCs occur (the "storage lesion"). However, there are no existing non-invasive methods to assess this. We evaluated the instrumental parameters needed to maximize the diffusely scattered signal, including pixel binning, slit width, and bandwidth. We demonstrated the effectiveness of this diffuse resonance Raman spectroscopy (DRRS) method by detecting RBCs through a blood bag segment (1 mm wall thickness). We directly compared the DRRS method to the more common stand-off Raman spectroscopy (SORS) method using both 633 nm and 785 nm excitation. Time-dependent DRRS spectra were used in a multivariate model for classification of RBCs in polymer segments by storage age. Young (6-8 day) RBCs were differentiated from old (35-40) RBCs with 100% sensitivity and 98.5% selectivity. These data indicated that DRRS is a promising, non-invasive technique for acquiring the spectra of sub-surface components, and is particularly applicable when the underlying sample can be resonantly enhanced.


Assuntos
Preservação de Sangue/efeitos adversos , Eritrócitos/patologia , Hemólise , Análise Espectral Raman/métodos , Hemina/química , Humanos , Análise Multivariada
17.
Lab Med ; 49(4): 298-310, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29893945

RESUMO

BACKGROUND: The therapeutic efficacy and safety of stored red blood cells (RBCs) relies on minimal in-bag hemolysis. The accuracy of current methods of measuring hemolysis can suffer as a result of specimen collection and processing artefacts. OBJECTIVE: To test whether Raman spectroscopy could be used to assess hemolysis. METHODS: RBCs were stored for as long as 42 days. Raman spectra of RBCs were measured before and after washing, and hemolysis was measured in supernatant by visible spectroscopy. RESULTS: Raman spectra indicated increased concentrations of oxyhemoglobin (oxyHb) and methemoglobin (metHb), and decreased membrane fluidity with storage age. Changes in oxyHb and metHb were associated with the intraerythrocytic and extracellular fractions, respectively. Hemolysis increased in a storage age-dependent manner. Changes in Raman bands reflective of oxyHb, metHb, and RBC membranes correlated with hemolysis; the most statistically significant change was an increased intensity of metHb and decreased membrane fluidity. CONCLUSIONS: These data suggest that Raman spectroscopy may offer a new label-free modality to assess RBC hemolysis during cold storage.


Assuntos
Preservação de Sangue/efeitos adversos , Eritrócitos/citologia , Hemólise/fisiologia , Análise Espectral Raman/métodos , Testes Hematológicos , Humanos
18.
Phys Rev Lett ; 119(5): 058101, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28949726

RESUMO

It is commonly thought that biological media cannot exhibit an appreciable nonlinear optical response. We demonstrate, for the first time to our knowledge, a tunable optical nonlinearity in suspensions of cyanobacteria that leads to robust propagation and strong self-action of a light beam. By deliberately altering the host environment of the marine bacteria, we show experimentally that nonlinear interaction can result in either deep penetration or enhanced scattering of light through the bacterial suspension, while the viability of the cells remains intact. A theoretical model is developed to show that a nonlocal nonlinearity mediated by optical forces (including both gradient and forward-scattering forces) acting on the bacteria explains our experimental observations.

19.
J Biophotonics ; 9(1-2): 67-82, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25808727

RESUMO

Sepsis is a life threatening condition resulting from a high burden of infection. It is a major health care problem and associated with inflammation, organ dysfunction and significant mortality. However, proper understanding and delineating the changes that occur during this complex condition remains a challenge. A comparative study involving intra-peritoneal injection of BALB/c mice with Salmonella Typhimurium (infection), lipopolysaccharide (endotoxic shock) or thioglycollate (sterile peritonitis) was performed. The changes in organs and sera were profiled using immunological assays and Fourier Transform Infrared (FTIR) micro-spectroscopy. There is a rapid rise in inflammatory cytokines accompanied with lowering of temperature, respiratory rate and glucose amounts in mice injected with S. Typhimurium or lipopolysaccharide. FTIR identifies distinct changes in liver and sera: decrease in glycogen and protein/lipid ratio and increase in DNA and cholesteryl esters. These changes were distinct from the pattern observed in mice treated with thioglycollate and the differences in the data obtained between the three models are discussed. The combination of FTIR spectroscopy and other biomarkers will be valuable in monitoring molecular changes during sepsis.


Assuntos
Sepse/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Amoxicilina/farmacologia , Amoxicilina/uso terapêutico , Animais , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Salmonella typhimurium/fisiologia , Sepse/tratamento farmacológico , Sepse/microbiologia , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/microbiologia , Tioglicolatos/farmacologia
20.
ACS Chem Neurosci ; 6(11): 1794-801, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26237409

RESUMO

Oxidative stress due to excessive accumulation of reactive oxygen or nitrogen species in the brain as seen in certain neurodegenerative diseases can have deleterious effects on neurons. Hydrogen peroxide, endogenously generated in neurons under normal physiological conditions, can produce an excess of hydroxyl radical via a Fenton mediated mechanism. This may induce acute oxidative injury if not scavenged or removed effectively by antioxidants. There are several biochemical assay methods to estimate oxidative injury in cells; however, they do not provide information on the biochemical changes as the cells get damaged progressively under oxidative stress. Raman microspectroscopy offers the possibility of real time monitoring of the chemical composition of live cells undergoing oxidative stress under physiological conditions. In the present study, a hippocampal neuron coculture was used to observe the acute impact of hydroxyl radicals generated by hydrogen peroxide in the presence of Fe(2+) (Fenton reaction). Raman peaks related to nucleic acids (725, 782, 1092, 1320, 1340, 1420, and 1576 cm(-1)) showed time-dependent changes over the experimental period (60 min), indicating the breakdown of the phosphodiester backbone as well as nuclear bases. Interestingly, ascorbic acid (a potent antioxidant) when cotreated with Fenton reactants showed protection of cells as inferred from the Raman spectra, presumably by scavenging hydroxyl radicals. Little or no change in the Raman spectra was observed for untreated control cells and for cells exposed to Fe(2+) only, H2O2 only, and ascorbate only. A live-dead assay study also supported the current observations. Hence, Raman microspectroscopy has the potential to be an excellent noninvasive tool for early detection of oxidative stress that is seen in neurodegenerative diseases.


Assuntos
Ácido Ascórbico/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Animais , Antioxidantes/farmacologia , Cátions/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Técnicas de Cocultura , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Peróxido de Hidrogênio/toxicidade , Radical Hidroxila/metabolismo , Ferro/toxicidade , Microscopia de Fluorescência , Ratos Wistar , Análise Espectral Raman/métodos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA