Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioconjug Chem ; 27(1): 36-41, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26619248

RESUMO

Photosynthesis is Nature's major process for converting solar into chemical energy. One of the key players in this process is the multiprotein complex photosystem I (PSI) that through absorption of incident photons enables electron transfer, which makes this protein attractive for applications in bioinspired photoactive hybrid materials. However, the efficiency of PSI is still limited by its poor absorption in the green part of the solar spectrum. Inspired by the existence of natural phycobilisome light-harvesting antennae, we have widened the absorption spectrum of PSI by covalent attachment of synthetic dyes to the protein backbone. Steady-state and time-resolved photoluminescence reveal that energy transfer occurs from these dyes to PSI. It is shown by oxygen-consumption measurements that subsequent charge generation is substantially enhanced under broad and narrow band excitation. Ultimately, surface photovoltage (SPV) experiments prove the enhanced activity of dye-modified PSI even in the solid state.


Assuntos
Corantes Fluorescentes/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Complexo de Proteína do Fotossistema I/química , Cianobactérias/química , Transferência de Energia , Transferência Ressonante de Energia de Fluorescência , Concentração de Íons de Hidrogênio , Luminescência , Lisina/química , Microscopia Eletrônica de Transmissão , Oxigênio/química , Oxigênio/metabolismo
2.
J Am Chem Soc ; 137(26): 8419-27, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26057523

RESUMO

Recently, photoactive proteins have gained a lot of attention due to their incorporation into bioinspired (photo)electrochemical and solar cells. This paper describes the measurement of the asymmetry of current transport of self-assembled monolayers (SAMs) of the entire photosystem I (PSI) protein complex (not the isolated reaction center, RCI), on two different "director SAMs" supported by ultraflat Au substrates. The director SAMs induce the preferential orientation of PSI, which manifest as asymmetry in tunneling charge-transport. We measured the oriented SAMs of PSI using eutectic Ga-In (EGaIn), a large-area technique, and conducting probe atomic force microscopy (CP-AFM), a single-complex technique, and determined that the transport properties are comparable. By varying the temperatures at which the measurements were performed, we found that there is no measurable dependence of the current on temperature from ±0.1 to ±1.0 V bias, and thus, we suggest tunneling as the mechanism for transport; there are no thermally activated (e.g., hopping) processes. Therefore, it is likely that relaxation in the electron transport chain is not responsible for the asymmetry in the conductance of SAMs of PSI complexes in these junctions, which we ascribe instead to the presence of a large, net dipole moment present in PSI.

3.
Adv Mater ; 26(28): 4863-9, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24862686

RESUMO

The large multiprotein complex, photosystem I (PSI), which is at the heart of light-dependent reactions in photosynthesis, is integrated as the active component in a solid-state organic photovoltaic cell. These experiments demonstrate that photoactive megadalton protein complexes are compatible with solution processing of organic-semiconductor materials and operate in a dry non-natural environment that is very different from the biological membrane.


Assuntos
Fontes de Energia Bioelétrica , Eletrodos , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/efeitos da radiação , Semicondutores , Energia Solar , Transdutores , Transferência de Energia/efeitos da radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA