Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hum Gene Ther Methods ; 24(4): 214-27, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23879627

RESUMO

Lentiviral vectors (LVs) are widely recognized as the most efficient method for the stable delivery of nucleic acid sequences into mammalian cells. Using erythropoietin (EPO), recombinant factor VIII (fVIII), and an anti-CD20 antibody as model proteins, we demonstrate advantages of LV-based gene delivery to achieve high production levels by transduced cells. Highly productive cell clones were able to incorporate up to 100 vector copies per cellular genome, without selection or gene amplification, and were isolated without extensive screening of a large number of clones. The LV transgenes were shown to be distributed throughout the genome, as visualized by fluorescent in situ hybridization. High-expressing clones producing 100-200 pg/cell/day of EPO were isolated and characterized. EPO production was demonstrated for at least 5½ months of continuous culture without selection, during which all the clones displayed high levels of glycosylation despite production levels at 10-20 g/liter. To demonstrate the utility of LV technology for multiple classes of proteins, cell lines producing fVIII and an anti-CD20 antibody were also developed. Cell clones demonstrating high levels of fVIII (100 clot units/ml and anti-CD20 antibody as high as 40-100 pg/cell/day) were isolated and characterized. LV-transduced cells and plasmid-transfected cells were compared for protein production per transgene copy. LV-transduced cells produced significantly higher levels of protein per copy of transgene than plasmid-transfected cells did. This study demonstrates the utility of LV technology for rapid generation of highly productive and stable cell lines over conventional plasmid transfection methods, significantly decreasing the time, cost, and risk of the manufacture of proteins and other complex biological molecules.


Assuntos
Anticorpos Monoclonais Murinos/genética , Eritropoetina/genética , Fator VIII/genética , Vetores Genéticos/genética , Lentivirus/genética , Animais , Anticorpos Monoclonais Murinos/metabolismo , Células CHO , Cricetinae , Cricetulus , Eritropoetina/metabolismo , Fator VIII/metabolismo , Células HEK293 , Humanos , Rituximab , Transfecção/métodos , Transgenes/genética
2.
Mol Ther ; 19(2): 302-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21081907

RESUMO

Patients with hemophilia A present with spontaneous and sometimes life-threatening bleeding episodes that are treated using blood coagulation factor VIII (fVIII) replacement products. Although effective, these products have limited availability worldwide due to supply limitations and product costs, which stem largely from manufacturing complexity. Current mammalian cell culture manufacturing systems yield around 100 µg/l of recombinant fVIII, with a per cell production rate of 0.05 pg/cell/day, representing 10,000-fold lesser production than is achieved for other similar-sized recombinant proteins (e.g. monoclonal antibodies). Expression of human fVIII is rate limited by inefficient transport through the cellular secretory pathway. Recently, we discovered that the orthologous porcine fVIII possesses two distinct sequence elements that enhance secretory transport efficiency. Herein, we describe the development of a bioengineered fVIII product using a novel lentiviral-driven recombinant protein manufacturing platform. The combined implementation of these technologies yielded production cell lines that biosynthesize in excess of 2.5 mg/l of recombinant fVIII at the rate of 9 pg/cell/day, which is the highest level of recombinant fVIII production reported to date, thereby validating the utility of both technologies.


Assuntos
Bioengenharia/métodos , Fator VIII/metabolismo , Vetores Genéticos/genética , Lentivirus/genética , Proteínas Recombinantes/metabolismo , Animais , Linhagem Celular , Cricetinae , Fator VIII/genética , Humanos , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA