RESUMO
The structure of cellular prion proteins encoded by the prion protein gene (PRNP) impacts susceptibility to transmissible spongiform encephalopathies, including chronic wasting disease (CWD) in deer. The recent emergence of CWD in Northern European reindeer (Rangifer tarandus), moose (Alces alces alces) and red deer (Cervus elaphus), in parallel with the outbreak in North America, gives reason to investigate PRNP variation in European deer, to implement risk assessments and adjust CWD management for deer populations under threat. We here report PRNP-sequence data from 911 samples of German red, roe (Capreolus capreolus), sika (Cervus nippon) and fallow deer (Dama dama) as well as additional data from 26 Danish red deer close to the German border and four zoo species not native to Germany. No PRNP sequence variation was observed in roe and fallow deer, as previously described for populations across Europe. In contrast, a broad PRNP variation was detected in red deer, with non-synonymous polymorphisms at codons 98, 226 and 247 as well as synonymous mutations at codons 21, 78, 136 and 185. Moreover, a novel 24 bp deletion within the octapeptide repeat was detected. In summary, 14 genotypes were seen in red deer with significant differences in their geographical distribution and frequencies, including geographical clustering of certain genotypes, suggesting "PRNP-linages" in this species. Based on data from North American CWD and the genotyping results of the European CWD cases, we would predict that large proportions of wild cervids in Europe might be susceptible to CWD once introduced to naive populations.
Assuntos
Cervos , Doença de Emaciação Crônica , Animais , Cervos/genética , Dinamarca , Variação Genética , Genótipo , Alemanha/epidemiologia , Polimorfismo Genético , Proteínas Priônicas/genética , Príons/genética , Doença de Emaciação Crônica/genética , Doença de Emaciação Crônica/epidemiologiaRESUMO
Since the reintroduction of African swine fever virus (ASFV) in Europe in 2007 and its subsequent spread to Asia, wild boar has played a crucial role in maintaining and disseminating the virus. There are significant gaps in the knowledge regarding infection dynamics and disease pathogenesis in domestic pigs and wild boar, particularly at the early infection stage. We aimed to compare domestic pigs and wild boar infected intranasally to mimic natural infection with one of the original highly virulent genotype II ASFV isolates (Armenia 2007). The study involved euthanising three domestic pigs and three wild boar on days 1, 2, 3, and 5 post-infection, while four domestic pigs and four wild boar were monitored until they reached a humane endpoint. The parameters assessed included clinical signs, macroscopic lesions, viremia levels, tissue viral load, and virus shedding in nasal and rectal swabs from day 1 post-infection. Compared with domestic pigs, wild boar were more susceptible to ASFV, with a shorter incubation period and earlier onset of clinical signs. While wild boar reached a humane endpoint earlier than domestic pigs did, the macroscopic lesions were comparatively less severe. In addition, wild boar had earlier viremia, and the virus was also detected earlier in tissues. The medial retropharyngeal lymph nodes were identified as key portals for ASFV infection in both subspecies. No viral genome was detected in nasal or rectal swabs until shortly before reaching the humane endpoint in both domestic pigs and wild boar, suggesting limited virus shedding in acute infections.
Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Genótipo , Sus scrofa , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/virologia , Suínos , Eliminação de Partículas Virais , Viremia/veterinária , Viremia/virologia , Carga Viral/veterinária , VirulênciaRESUMO
The application of a One Health approach recognizes that human health, animal health, plant health and ecosystem health are intrinsically connected. Tackling complex challenges associated with foodborne zoonoses, antimicrobial resistance, and emerging threats is imperative. Therefore, the One Health European Joint Programme was established within the European Union research programme Horizon 2020. The One Health European Joint Programme activities were based on the development and harmonization of a One Health science-based framework in the European Union (EU) and involved public health, animal health and food safety institutes from almost all EU Member States, the UK and Norway, thus strengthening the cooperation between public, medical and veterinary organizations in Europe. Activities including 24 joint research projects, 6 joint integrative projects and 17 PhD projects, and a multicountry simulation exercise facilitated harmonization of laboratory methods and surveillance, and improved tools for risk assessment. The provision of sustainable solutions is integral to a One Health approach. To ensure the legacy of the work of the One Health European Joint Programme, focus was on strategic communication and dissemination of the outputs and engagement of stakeholders at the national, European and international levels.
Assuntos
União Europeia , Saúde Única , Humanos , Animais , Saúde Pública , Europa (Continente) , Zoonoses/prevenção & controle , Comunicação , Inocuidade dos AlimentosRESUMO
Shah and colleagues [...].
Assuntos
Filogeografia , Filogenia , Genoma Viral , Humanos , AnimaisRESUMO
In 2020/2021, several European brown hare syndrome virus (EBHSV) outbreaks were recorded in European hares (Lepus europaeus) from Catalonia, Spain. Recombination analysis combined with phylogenetic reconstruction and estimation of genetic distances of the complete coding sequences revealed that 5 strains were recombinants. The recombination breakpoint is located within the non-structural protein 2C-like RNA helicase (nucleotide position ~ 1889). For the genomic fragment upstream of the breakpoint, a non-pathogenic EBHSV-related strain (hare calicivirus, HaCV; GII.2) was the most closely related sequence; for the rest of the genome, the most similar strains were the European brown hare syndrome virus (EBHSV) strains recovered from the same 2020/2021 outbreaks, suggesting a recent origin. While the functional impact of the atypical recombination breakpoint remains undetermined, the novel recombinant strain was detected in different European brown hare populations from Catalonia, located 20-100 km apart, and seems to have caused a fatal disease both in juvenile and adult animals, confirming its viability and ability to spread and establish infection. This is the first report of a recombination event involving HaCV and EBHSV and, despite the recombination with a non-pathogenic strain, it appears to be associated with mortality in European brown hares, which warrants close monitoring.
Assuntos
Infecções por Caliciviridae , Lebres , Lagovirus , Animais , Espanha/epidemiologia , Filogenia , Lagovirus/genéticaRESUMO
Staphylococcus aureus is a versatile pathogen that does not only occur in humans but also in various wild and domestic animals, including several avian species. When characterizing S. aureus isolates from waterfowl, isolates were identified as atypical CC133 by DNA microarray analysis. They differed from previously sequenced CC133 strains in the presence of the collagen adhesin gene cna; some also showed a different capsule type and a deviant spa type. Thus, they were subjected to whole-genome sequencing. This revealed multiple insertions of large regions of DNA from other S. aureus lineages into a CC133-derived backbone genome. Three distinct strains were identified based on the size and extent of these inserts. One strain comprised two small inserts of foreign DNA up- and downstream of oriC; one of about 7000 nt or 0.25% originated from CC692 and the other, at ca. 38,000 nt or 1.3% slightly larger one was of CC522 provenance. The second strain carried a larger CC692 insert (nearly 257,000 nt or 10% of the strain's genome), and its CC522-derived insert was also larger, at about 53,500 nt or 2% of the genome). The third strain carried an identical CC692-derived region (in which the same mutations were observed as in the second strain), but it had a considerably larger CC522-like insertion of about 167,000 nt or 5.9% of the genome. Both isolates of the first, and two out of four isolates of the second strain also harbored a hemolysin-beta-integrating prophage carrying "bird-specific" virulence factors, ornithine cyclodeaminase D0K6J8 and a putative protease D0K6J9. Furthermore, isolates had two different variants of SCC elements that lacked mecA/mecC genes. These findings highlight the role of horizontal gene transfer in the evolution of S. aureus facilitated by SCC elements, by phages, and by a yet undescribed mechanism for large-scale exchange of core genomic DNA.
RESUMO
Transmissible spongiform encephalopathies or prion diseases comprise diseases with different levels of contagiousness under natural conditions. The hypothesis has been raised that the chronic wasting disease (CWD) cases detected in Nordic moose (Alces alces) may be less contagious, or not contagious between live animals under field conditions. This study aims to investigate the epidemiology of CWD cases detected in moose in Norway, Sweden and Finland using surveillance data from 2016 to 2022.In total, 18 CWD cases were detected in Nordic moose. All moose were positive for prion (PrPres) detection in the brain, but negative in lymph nodes, all were old (mean 16 years; range 12-20) and all except one, were female. Age appeared to be a strong risk factor, and the sex difference may be explained by few males reaching high age due to hunting targeting calves, yearlings and males.The cases were geographically scattered, distributed over 15 municipalities. However, three cases were detected in each of two areas, Selbu in Norway and Arjeplog-Arvidsjaur in Sweden. A Monte Carlo simulation approach was applied to investigate the likelihood of such clustering occurring by chance, given the assumption of a non-contagious disease. The empirical P-value for obtaining three cases in one Norwegian municipality was less than 0.05, indicating clustering. However, the moose in Selbu were affected by different CWD strains, and over a 6 year period with intensive surveillance, the apparent prevalence decreased, which would not be expected for an ongoing outbreak of CWD. Likewise, the three cases in Arjeplog-Arvidsjaur could also indicate clustering, but management practices promotes a larger proportion of old females and the detection of the first CWD case contributed to increased awareness and sampling.The results of our study show that the CWD cases detected so far in Nordic moose have a different epidemiology compared to CWD cases reported from North America and in Norwegian reindeer (Rangifer tarandus tarandus). The results support the hypothesis that these cases are less contagious or not contagious between live animals under field conditions. To enable differentiation from other types of CWD, we support the use of sporadic CWD (sCWD) among the names already in use.
Assuntos
Cervos , Doença de Emaciação Crônica , Feminino , Masculino , Animais , Estudos Epidemiológicos , Encéfalo , Análise por ConglomeradosRESUMO
Prion diseases are a group of neurodegenerative, transmissible, and fatal disorders that affect several animal species. They are characterized by the conformational conversion of the cellular prion protein (PrPC) into the pathological prion protein (PrPSc). In 2016, chronic wasting disease (CWD) gained great importance at European level due to the first disease detection in a wild reindeer (Rangifer tarandus) in Norway. The subsequent intensive CWD surveillance launched in cervids resulted in the detection of CWD in moose (Alces alces), with 11 cases in Norway, 3 in Finland and 4 in Sweden. These moose cases differ considerably from CWD cases in North American and reindeer in Norway, as PrPSc was detectable in the brain but not in lymphoid tissues. These facts suggest the occurrence of a new type of CWD. Here, we show some immunohistochemical features that are clearly different from CWD cases in North American and Norwegian reindeer. Further, the different types of PrPSc deposits found among moose demonstrate strong variations between the cases, supporting the postulation that these cases could carry multiple strains of CWD.
Assuntos
Cervos , Príons , Rena , Doença de Emaciação Crônica , Animais , Proteínas Priônicas , Doença de Emaciação Crônica/epidemiologia , Finlândia/epidemiologia , Suécia/epidemiologia , Encéfalo , Noruega/epidemiologiaRESUMO
Prion diseases are fatal neurodegenerative disorders with known natural occurrence in humans and a few other mammalian species. The diseases are experimentally transmissible, and the agent is derived from the host-encoded cellular prion protein (PrPC), which is misfolded into a pathogenic conformer, designated PrPSc (scrapie). Aggregates of PrPSc molecules, constitute proteinaceous infectious particles, known as prions. Classical scrapie in sheep and goats and chronic wasting disease (CWD) in cervids are known to be infectious under natural conditions. In CWD, infected animals can shed prions via bodily excretions, allowing direct host-to-host transmission or indirectly via prion-contaminated environments. The robustness of prions means that transmission via the latter route can be highly successful and has meant that limiting the spread of CWD has proven difficult. In 2016, CWD was diagnosed for the first time in Europe, in reindeer (Rangifer tarandus) and European moose (Alces alces). Both were diagnosed in Norway, and, subsequently, more cases were detected in a semi-isolated wild reindeer population in the Nordfjella area, in which the first case was identified. This population was culled, and all reindeer (approximately 2400) were tested for CWD; 18 positive animals, in addition to the first diagnosed case, were found. After two years and around 25,900 negative tests from reindeer (about 6500 from wild and 19,400 from semi-domesticated) in Norway, a new case was diagnosed in a wild reindeer buck on Hardangervidda, south of the Nordfjella area, in 2020. Further cases of CWD were also identified in moose, with a total of eight in Norway, four in Sweden, and two cases in Finland. The mean age of these cases is 14.7 years, and the pathological features are different from North American CWD and from the Norwegian reindeer cases, resembling atypical prion diseases such as Nor98/atypical scrapie and H- and L-forms of BSE. In this review, these moose cases are referred to as atypical CWD. In addition, two cases were diagnosed in red deer (Cervus elaphus) in Norway. The emergence of CWD in Europe is a threat to European cervid populations, and, potentially, a food-safety challenge, calling for a swift, evidence-based response. Here, we review data on surveillance, epidemiology, and disease characteristics, including prion strain features of the newly identified European CWD agents.
Assuntos
Cervos , Príons , Scrapie , Doenças dos Ovinos , Doença de Emaciação Crônica , Animais , Europa (Continente) , Príons/genética , Ovinos , Doença de Emaciação Crônica/epidemiologiaRESUMO
The understanding of the pathogenic mechanisms and the clinicopathological forms caused by currently circulating African swine fever virus (ASFV) isolates is incomplete. So far, most of the studies have been focused on isolates classified within genotypes I and II, the only genotypes that have circulated outside of Africa. However, less is known about the clinical presentations and lesions induced by isolates belonging to the other twenty-two genotypes. Therefore, the early clinicopathological identification of disease outbreaks caused by isolates belonging to, as yet, not well-characterised ASFV genotypes may be compromised, which might cause a delay in the implementation of control measures to halt the virus spread. To improve the pathological characterisation of disease caused by diverse isolates, we have refined the macroscopic and histopathological evaluation protocols to standardise the scoring of lesions. Domestic pigs were inoculated intranasally with different doses (high, medium and low) of ASFV isolate Ken05/Tk1 (genotype X). To complement previous studies, the distribution and severity of macroscopic and histopathological lesions, along with the amount and distribution of viral antigen in tissues, were characterised by applying the new scoring protocols. The intranasal inoculation of domestic pigs with high doses of the Ken05/Tk1 isolate induced acute forms of ASF in most of the animals. Inoculation with medium doses mainly induced acute forms of disease. A less severe but longer clinical course, typical of subacute forms, characterised by the presence of more widespread and severe haemorrhages and oedema, was observed in one pig inoculated with the medium dose. The severity of vascular lesions (haemorrhages and oedema) induced by high and medium doses was not associated with the amount of virus antigen detected in tissues, therefore these might be attributed to indirect mechanisms not evaluated in the present study. The absence of clinical signs, lesions and detectable levels of virus genome or antigen in blood from the animals inoculated with the lowest dose ruled out the existence of possible asymptomatic carriers or persistently infected pigs, at least for the 21 days period of the study. The results corroborate the moderate virulence of the Ken05/Tk1 isolate, as well as its capacity to induce both the acute and, occasionally, subacute forms of ASF when high and medium doses were administered intranasally.
RESUMO
We report the first detection of chronic wasting disease (CWD) in Sweden, in three old female moose (Alces alces). Prions (PrPCWD) were detected in brain but not in lymph nodes. The findings are similar to previously described CWD cases in old moose in Norway, where a spontaneous origin is hypothesized.
Assuntos
Encéfalo/patologia , Cervos , Doença de Emaciação Crônica/diagnóstico , Animais , Feminino , Suécia/epidemiologia , Doença de Emaciação Crônica/epidemiologia , Doença de Emaciação Crônica/patologiaRESUMO
In France, tularemia is caused by Francisella tularensis subsp. holarctica and is a sporadic disease affecting mainly wildlife animals and humans. F. tularensis species presents low genetic diversity that remains poorly described in France, as only a few genomes of isolates from the country are available so far. The objective of this study was to characterize the genetic diversity of F. tularensis in France and describe the phylogenetic distribution of isolates through whole-genome sequencing and molecular typing. Whole genomes of 350 strains of human or animal origin, collected from 1947 to 2018 in France and neighboring countries, were sequenced. A preliminary classification using the established canonical single nucleotide polymorphism (canSNP) nomenclature was performed. All isolates from France (except four) belonged to clade B.44, previously described in Western Europe. To increase the resolution power, a whole-genome SNP analysis was carried out. We were able to accurately reconstruct the population structure according to the global phylogenetic framework, and highlight numerous novel subclades. Whole-genome SNP analysis identified 87 new canSNPs specific to these subclades, among which 82 belonged to clade B.44. Identifying genomic features that are specific to sublineages is highly relevant in epidemiology and public health. We highlighted a large number of clusters among a single clade (B.44), which shows for the first time some genetic diversity among F. tularensis isolates from France, and the star phylogeny observed in clade B.44-subclades revealed that F. tularensis biodiversity in the country is relatively recent and resulted from clonal expansion of a single population. No association between clades and hosts or clinical forms of the disease was detected, but spatiotemporal clusters were identified for the first time in France. This is consistent with the hypothesis of persistence of F. tularensis strains found in Western Europe in the environment, associated with slow replication rates. Moreover, the presence of identical genotypes across long periods of time, and across long distances, supports this hypothesis but also suggests long-distance dispersal of the bacterium.
Assuntos
Febre Suína Africana/epidemiologia , Febre Suína Africana/prevenção & controle , Erradicação de Doenças , Vacinas Virais/efeitos adversos , Animais , Asfarviridae/genética , Asfarviridae/imunologia , Suínos , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética , Vacinas Virais/genéticaRESUMO
After the re-introduction of African swine fever virus (ASFV) genotype II isolates into Georgia in 2007, the disease spread from Eastern to Western Europe and then jumped first up to Mongolian borders and later into China in August 2018, spreading out of control and reaching different countries of Southeast Asia in 2019. From the initial incursion, along with domestic pigs, wild boar displayed a high susceptibility to ASFV and disease development. The disease established self-sustaining cycles within the wild boar population, a key fact that helped its spread and that pointed to the wild boar population as a substantial reservoir in Europe and probably also in Asia, which may hinder eradication and serve as the source for further geographic expansion. The present review gathers the most relevant information available regarding infection dynamics, disease pathogenesis and immune response that experimental infections with different ASFV isolates belonging to genotype I and II in wild boar and feral pigs have generated. Knowledge gaps in areas such as disease pathogenesis and immune response highlights the importance of focusing future studies on unravelling the early mechanisms of virus-cell interaction and innate and/or adaptive immune responses, knowledge that will contribute to the development of efficacious treatments/vaccines against ASFV.
Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/imunologia , Febre Suína Africana/fisiopatologia , Interações entre Hospedeiro e Microrganismos , Sus scrofa/virologia , Animais , Animais Selvagens/virologia , Genótipo , SuínosRESUMO
BACKGROUND: Due to increasing popularity in Sweden during the last decade, alpacas are frequently encountered by practising veterinarians and pathologists. Knowledge regarding their health and diseases under Swedish conditions is, however, limited. OBJECTIVES: To improve knowledge about the health of alpacas in Sweden by collecting information on diseases and health status. DESIGN: A retrospective study was made of 93 necropsies conducted on alpacas in Sweden during the period 2001-2013. SETTING: Data were obtained from the two major veterinary pathology centres in Sweden. The alpacas were hobby or farm animals and they were submitted by veterinarians in local practices or at a national animal healthcare organisation. RESULTS: The digestive system was most frequently affected (29 per cent), with parasitic gastroenteritis (17 per cent) and hepatic disease being especially prevalent (15 per cent fascioliasis and 7 per cent hepatitis). Cardiovascular conditions (9 per cent), systemic diseases (7 per cent) and perinatal deaths were also common, including abortions (10 per cent) and fatal septicaemia (4 per cent). Wasting/emaciation was a frequent finding (26 per cent). Other diagnoses included dermatitis (8 per cent), diseases of the central nervous system (8 per cent), traumatic injuries (7 per cent), neoplasia (5 per cent), pneumonia (5 per cent) and nephritis (3 per cent). CONCLUSIONS: This study identified areas of concern regarding diagnostic and pathological procedures, for which specific measures have been recommended. One particular cause for concern was the number of deaths from emaciation in weanling alpacas during late winter or early spring. For adult alpacas, infectious and non-infectious causes of death were approximately equally frequent. Many of the diseases were considered clinically acute but pathology often showed them to be chronic conditions that had eventually deteriorated and presented as acute cases in the late stages. This study revealed similarities in the health/disease status reported in other European countries and in North America. The results can be used by alpaca keepers and veterinary practitioners to improve management, diagnosis and treatment of alpacas.
RESUMO
Many infectious diseases originating from, or carried by, wildlife affect wildlife conservation and biodiversity, livestock health, or human health. We provide an update on changes in the epidemiology of 25 selected infectious, wildlife-related diseases in Europe (from 2010-16) that had an impact, or may have a future impact, on the health of wildlife, livestock, and humans. These pathogens were selected based on their: 1) identification in recent Europe-wide projects as important surveillance targets, 2) inclusion in European Union legislation as pathogens requiring obligatory surveillance, 3) presence in recent literature on wildlife-related diseases in Europe since 2010, 4) inclusion in key pathogen lists released by the Office International des Epizooties, 5) identification in conference presentations and informal discussions on a group email list by a European network of wildlife disease scientists from the European Wildlife Disease Association, or 6) identification as pathogens with changes in their epidemiology during 2010-16. The wildlife pathogens or diseases included in this review are: avian influenza virus, seal influenza virus, lagoviruses, rabies virus, bat lyssaviruses, filoviruses, canine distemper virus, morbilliviruses in aquatic mammals, bluetongue virus, West Nile virus, hantaviruses, Schmallenberg virus, Crimean-Congo hemorrhagic fever virus, African swine fever virus, amphibian ranavirus, hepatitis E virus, bovine tuberculosis ( Mycobacterium bovis), tularemia ( Francisella tularensis), brucellosis ( Brucella spp.), salmonellosis ( Salmonella spp.), Coxiella burnetii, chytridiomycosis, Echinococcus multilocularis, Leishmania infantum, and chronic wasting disease. Further work is needed to identify all of the key drivers of disease change and emergence, as they appear to be influencing the incidence and spread of these pathogens in Europe. We present a summary of these recent changes during 2010-16 to discuss possible commonalities and drivers of disease change and to identify directions for future work on wildlife-related diseases in Europe. Many of the pathogens are entering Europe from other continents while others are expanding their ranges inside and beyond Europe. Surveillance for these wildlife-related diseases at a continental scale is therefore important for planet-wide assessment, awareness of, and preparedness for the risks they may pose to wildlife, domestic animal, and human health.
Assuntos
Animais Selvagens , Doenças Transmissíveis/veterinária , Animais , Doenças Transmissíveis/epidemiologia , Europa (Continente)/epidemiologia , Humanos , Vigilância da População , ZoonosesRESUMO
BACKGROUND: Prior to 2010, the lagoviruses that cause rabbit hemorrhagic disease (RHD) in European rabbits (Oryctolagus cuniculus) and European brown hare syndrome (EBHS) in hares (Lepus spp.) were generally genus-specific. However, in 2010, rabbit hemorrhagic disease virus 2 (RHDV2), also known as Lagovirus europaeus GI.2, emerged and had the distinguishing ability to cause disease in both rabbits and certain hare species. The mountain hare (Lepus timidus) is native to Sweden and is susceptible to European brown hare syndrome virus (EBHSV), also called Lagovirus europaeus GII.1. While most mountain hare populations are found on the mainland, isolated populations also exist on islands. Here we investigate a mortality event in mountain hares on the small island of Hallands Väderö where other leporid species, including rabbits, are absent. RESULTS: Post-mortem and microscopic examination of three mountain hare carcasses collected from early November 2016 to mid-March 2017 revealed acute hepatic necrosis consistent with pathogenic lagovirus infection. Using immunohistochemistry, lagoviral capsid antigen was visualized within lesions, both in hepatocytes and macrophages. Genotyping and immunotyping of the virus independently confirmed infection with L. europaeus GI.2, not GII.1. Phylogenetic analyses of the vp60 gene grouped mountain hare strains together with a rabbit strain from an outbreak of GI.2 in July 2016, collected approximately 50 km away on the mainland. CONCLUSIONS: This is the first documented infection of GI.2 in mountain hares and further expands the host range of GI.2. Lesions and tissue distribution mimic those of GII.1 in mountain hares. The virus was most likely initially introduced from a concurrent, large-scale GI.2 outbreak in rabbits on the adjacent mainland, providing another example of how readily this virus can spread. The mortality event in mountain hares lasted for at least 4.5 months in the absence of rabbits, which would have required virus circulation among mountain hares, environmental persistence and/or multiple introductions. This marks the fourth Lepus species that can succumb to GI.2 infection, suggesting that susceptibility to GI.2 may be common in Lepus species. Measures to minimize the spread of GI.2 to vulnerable Lepus populations therefore are prudent.
Assuntos
Infecções por Caliciviridae/veterinária , Lebres , Lagovirus , Animais , Animais Selvagens , Infecções por Caliciviridae/mortalidade , Infecções por Caliciviridae/patologia , Surtos de Doenças/veterinária , Feminino , Lagovirus/classificação , Lagovirus/isolamento & purificação , Masculino , Tipagem Molecular , Filogenia , Sorotipagem/veterinária , SuéciaRESUMO
Lagovirus europaeus GI.2, also known as RHDV2 or RHDVb, is an emerging virus that causes rabbit haemorrhagic disease (RHD) in European rabbits (Oryctolagus cuniculus). In contrast to L. europaeus GI.1 (or RHDV/RHDVa) viruses that are only pathogenic for adults, GI.2 causes clinical disease in both adults and kittens. However, detailed descriptions of the pathology of this virus that may provide insight into its pathogenicity and emergence are lacking. Using an Australian GI.2 field strain isolated in 2015, we provide the first detailed description of pathology, viral antigen distribution and tissue load of GI.2 in adult and 5-week old New Zealand white rabbits using histology, immunohistochemistry and RT-qPCR. Liver was the target organ, but in contrast to GI.1 viruses, lesions and inflammatory responses did not differ between adults and kittens. Lymphocytic inflammation, proposed to be protective in kittens infected with GI.1, was notably absent. We also present the first descriptions of bone marrow changes in RHD, including decreased myeloid-to-erythroid ratio. Consistent with other pathogenic lagoviruses, intracellular viral antigen was demonstrated in hepatocytes and cells of the mononuclear phagocytic system. In terminal stages of disease, viral loads were highest in liver, serum and spleen. Despite the small sample size, our data suggest that unlike early European GI.2 strains, the pathogenicity of the Australian GI.2 virus is similar to GI.1 viruses. Additionally, GI.2 was fatal for all (n = 5) inoculated kittens in this study. This may significantly alter RHD epidemiology in the field, and may impact biocontrol programs for invasive rabbits in Australia where GI.1 viruses are intentionally released.
Assuntos
Infecções por Caliciviridae/veterinária , Vírus da Doença Hemorrágica de Coelhos/fisiologia , Coelhos , Fatores Etários , Animais , Austrália , Infecções por Caliciviridae/patologia , Infecções por Caliciviridae/virologia , Distribuição TecidualRESUMO
BACKGROUND: Tularemia is a zoonosis caused by the bacterium Francisella tularensis. It has a wide host range, which includes mammals, birds and invertebrates. F. tularensis has often been isolated from various species of small rodents, but the pathology in naturally infected wild rodent species has rarely been reported. CASE PRESENTATION: Herein, we describe the pathology of tularemia in two naturally infected wild yellow-necked mice (Apodemus flavicollis). To visualize F. tularensis subsp. holarctica, indirect immunofluorescence and immunohistochemistry were applied on tissue sections. Real time polymerase chain reaction detected the bacterium in samples from liver and spleen in both mice. The only finding at necropsy was splenomegaly in one of the mice. Histological examination revealed necrotic foci in the liver associated with mild inflammation in both mice. Immunohistochemistry and indirect immunofluorescence showed bacteria disseminated in many organs, in the cytoplasm of macrophages, and intravascularly. CONCLUSIONS: The two yellow-necked mice died of an acute disease caused by tularemic infection disseminated to many organs. Further investigations of naturally infected small rodents are important to better understand the variability in pathological presentation caused by infection by F. tularensis subsp. holarctica, as well to elucidate the importance of small rodents as transmitters and/or reservoirs.