Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurotoxicology ; 79: 95-103, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32380191

RESUMO

Xenobiotic electrophiles can form covalent adducts that may impair protein function, damage DNA, and may lead a range of adverse effects. Cumulative neurotoxicity is one adverse effect that has been linked to covalent protein binding as a Molecular Initiating Event (MIE). This paper describes a mechanistic in silico chemical screening approach for neurotoxicity based on Hard and Soft Acids and Bases (HSAB) theory. We evaluated the applicability of HSAB-based electrophilicity screening protocol for neurotoxicity on 19 positive and 19 negative reference chemicals. These reference chemicals were identified from the literature, using available information on mechanisms of neurotoxicity whenever possible. In silico screening was based on structural alerts for protein binding motifs and electrophilicity index in the range of known neurotoxicants. The approach demonstrated both a high positive prediction rate (82-90 %) and specificity (90 %). The overall sensitivity was relatively lower (47 %). However, when predicting the toxicity of chemicals known or suspected of acting via non-specific adduct formation mechanism, the HSAB approach identified 7/8 (sensitivity 88 %) of positive control chemicals correctly. Consequently, the HSAB-based screening is a promising approach of identifying possible neurotoxins with adduct formation molecular initiating events. While the approach must be expanded over time to capture a wider range of MIEs involved in neurotoxicity, the mechanistic nature of the screen allows users to flag chemicals for possible adduct formation MIEs. Thus, the HSAB based toxicity screening is a promising strategy for toxicity assessment and chemical prioritization in neurotoxicology and other health endpoints that involve adduct formation.


Assuntos
Ácidos/toxicidade , Álcalis/toxicidade , Poluentes Ambientais/toxicidade , Modelos Químicos , Síndromes Neurotóxicas/etiologia , Neurotoxinas/toxicidade , Ácidos/química , Álcalis/química , Animais , Poluentes Ambientais/química , Humanos , Concentração de Íons de Hidrogênio , Neurotoxinas/química , Medição de Risco , Fatores de Risco
2.
Chem Res Toxicol ; 29(12): 2096-2107, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27989140

RESUMO

Evidence from laboratory studies and clinical trials suggests that plant-derived polyphenolic compounds such as curcumin, resveratrol, or phloretin might be useful in the treatment of certain diseases (e.g., Alzheimer's disease) and acute tissue injury states (e.g., spinal cord trauma). However, despite this potential, the corresponding chemical instability, toxic potential, and low bioavailability of these compounds could limit their ultimate clinical relevance. We have shown that pharmacophores of curcumin (e.g., 2-acetylcyclopentanone) and phloretin (e.g., 2',4',6'-trihydroxyacetophenone; THA) can provide cytoprotection in cell culture and animal models of oxidative stress injury. These pharmacophores are 1,3-dicarbonyl and polyphenol derivatives, the enol groups of which can ionize in biological solutions to form an enolate. This carbanionic moiety can chelate metal ions and, as a nucleophile, can scavenge toxic electrophiles (e.g., acrolein, 4-hydroxy-2-nonenal, and N-acetyl-p-benzoquinone imine) involved in many pathogenic conditions. Aromatic derivatives such as THA can also trap free oxygen and nitrogen radicals and thereby provide another layer of cytoprotection. The multifunctional character of these enolate-forming compounds suggests an ability to block pathogenic processes (e.g., oxidative stress) at several steps. The purpose of this review is to discuss research supporting our theory that enolate formation is a significant cytoprotective property that represents a platform for development of pharmacotherapeutic approaches to a variety of toxic and pathogenic conditions. Our discussion will focus on mechanism and structure-activity studies that define enolate chemistry and their corresponding relationships to cytoprotection.


Assuntos
Citoproteção , Animais , Células Cultivadas , Hepatócitos/citologia , Estresse Oxidativo , Polifenóis/química , Relação Estrutura-Atividade
3.
Chem Biol Interact ; 254: 198-206, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27288850

RESUMO

Human populations are exposed to complex environmental mixtures of acrolein, methylvinyl ketone (MVK) and other type-2 alkenes. Many members of this chemical class are electrophiles that possess a common molecular mechanism of toxicity; i.e., protein inactivation via formation of stable cysteine adducts. Therefore, acute or chronic exposure to type-2 alkene mixtures could represent a health risk due to additive or synergistic interactions among component chemicals. Despite this risk, there is little experimental information regarding the joint effects of type-2 alkenes. In the present study we used sum of toxic units (TUsum = ∑TUi) to assess the relative toxicity of different type-2 alkene mixtures. These studies involved well characterized environmental type-2 alkene toxicants and included amide (acrylamide; ACR), ketone (methyl vinyl ketone; MVK), aldehyde (2-ethylacrolein; EA) and ester (methyl acrylate; MA) derivatives. In chemico analyses revealed that both binary and ternary mixtures could deplete thiol groups according to an additive joint effect at equitoxic and non-equitoxic ratios; i.e., TUsum = 1.0 ± 0.20. In contrast, analyses of joint effects in SNB19 cell cultures indicated that different permutations of type-2 alkene mixtures produced mostly synergistic joint effects with respect to cell lethality; i.e., TUsum < 0.80. A mixture of ACR and MA was shown to produce joint toxicity in a rat model. This mixture accelerated the onset and development of neurotoxicity relative to the effects of the individual toxicants. Synergistic effects in biological models might occur when different cellular proteomes are targeted, whereas additive effects develop when the mixtures encompasses a similar proteome.


Assuntos
Alcenos/toxicidade , Apoptose/efeitos dos fármacos , Acrilamida/toxicidade , Aldeídos/química , Aldeídos/toxicidade , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Cetonas/química , Cetonas/toxicidade , Masculino , Ratos , Ratos Sprague-Dawley
4.
J Pharmacol Exp Ther ; 357(3): 476-86, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27029584

RESUMO

Drug-induced toxicity is often mediated by electrophilic metabolites, such as bioactivation of acetaminophen (APAP) to N-acetyl-p-benzoquinone imine (NAPQI). We have shown that APAP hepatotoxicity can be prevented by 2-acetylcyclopentanone (2-ACP). This 1,3-dicarbonyl compound ionizes to form an enolate nucleophile that scavenges NAPQI and other electrophilic intermediates. In this study, we expanded our investigation of enolate-forming compounds to include analyses of the phloretin pharmacophores, 2',4',6'-trihydroxyacetophenone (THA) and phloroglucinol (PG). Studies in a mouse model of APAP overdose showed that THA provided hepatoprotection when given either by intraperitoneal injection or oral administration, whereas PG was hepatoprotective only when given intraperitoneally. Corroborative research characterized the molecular pharmacology (efficacy, potency) of 2-ACP, THA, and PG in APAP-exposed isolated mouse hepatocytes. For comparative purposes, N-acetylcysteine (NAC) cytoprotection was also evaluated. Measurements of multiple cell parameters (e.g., cell viability, mitochondrial membrane depolarization) indicated that THA and, to a lesser extent, PG provided concentration-dependent protection against APAP toxicity, which exceeded that of 2-ACP or NAC. The enolate-forming compounds and NAC truncated ongoing APAP exposure and thereby returned intoxicated hepatocytes toward normal viability. The superior ability of THA to protect is related to multifaceted modes of action that include metal ion chelation, free radical trapping, and scavenging of NAPQI and other soft electrophiles involved in oxidative stress. The rank order of potency for the tested cytoprotectants was consistent with that determined in a parallel mouse model. These data suggest that THA or a derivative might be useful in treating drug-induced toxicities and other conditions that involve electrophile-mediated pathogenesis.


Assuntos
Acetaminofen/metabolismo , Acetaminofen/toxicidade , Benzoquinonas/metabolismo , Citoproteção/efeitos dos fármacos , Iminas/metabolismo , Fígado/efeitos dos fármacos , Floretina/farmacologia , Animais , Fígado/citologia , Fígado/metabolismo , Masculino , Camundongos , Floretina/metabolismo
5.
Free Radic Res ; 50(2): 195-205, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26559119

RESUMO

Electrophiles are electron-deficient species that form covalent bonds with electron-rich nucleophiles. In biological systems, reversible electrophile-nucleophile interactions mediate basal cytophysiological functions (e.g. enzyme regulation through S-nitrosylation), whereas irreversible electrophilic adduction of cellular macromolecules is involved in pathogenic processes that underlie many disease and injury states. The nucleophiles most often targeted by electrophiles are side chains on protein amino acids (e.g. Cys, His, and Lys) and aromatic nitrogen sites on DNA bases (e.g. guanine N7). The sulfhydryl thiol (RSH) side chain of cysteine residues is a weak nucleophile that can be ionized in specific conditions to a more reactive nucleophilic thiolate (RS(-)). This review will focus on electrophile interactions with cysteine thiolates and the pathophysiological consequences that result from irreversible electrophile modification of this anionic sulfur. According to the Hard and Soft, Acids and Bases (HSAB) theory of Pearson, electrophiles and nucleophiles can be classified as either soft or hard depending on their relative polarizability. HSAB theory suggests that electrophiles will preferentially and more rapidly form covalent adducts with nucleophiles of comparable softness or hardness. Application of HSAB principles, in conjunction with in vitro and proteomic studies, have indicated that soft electrophiles of broad chemical classes selectively form covalent Michael-type adducts with soft, highly reactive cysteine thiolate nucleophiles. Therefore, these electrophiles exhibit a common mechanism of cytotoxicity. As we will discuss, this level of detailed mechanistic understanding is a necessary prerequisite for the rational development of effective prevention and treatment strategies for electrophile-based pathogenic states.


Assuntos
Cisteína/análogos & derivados , Compostos de Sulfidrila/metabolismo , Aldeídos , Animais , Cisteína/química , Cisteína/metabolismo , Cisteína/fisiologia , Humanos , Estresse Oxidativo , Proteômica , Compostos de Sulfidrila/química , Compostos de Sulfidrila/fisiologia
7.
J Pharmacol Exp Ther ; 353(1): 150-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25659651

RESUMO

We have previously shown that 2-acetylcyclopentanone (2-ACP), an enolate-forming 1,3-dicarbonyl compound, provides protection in cell culture and animal models of oxidative stress. The pathophysiology of ischemia-reperfusion injury (IRI) involves oxidative stress, and, therefore, we determined the ability of 2-ACP to prevent this injury in a rat liver model. IRI was induced by clamping the portal vasculature for 45 minutes (ischemia phase), followed by recirculation for 180 minutes (reperfusion phase). This sequence was associated with substantial derangement of plasma liver enzyme activities, histopathological indices, and markers of oxidative stress. The 2-ACP (0.80-2.40 mmol/kg), administered by intraperitoneal injection 10 minutes prior to reperfusion, provided dose-dependent cytoprotection, as indicated by normalization of the IRI-altered liver histologic and biochemical parameters. The 2-ACP (2.40 mmol/kg) was also hepatoprotective when injected before clamping the circulation (ischemia phase). In contrast, an equimolar dose of N-acetylcysteine (2.40 mmol/kg) was not hepatoprotective when administered prior to reperfusion. Our studies to date suggest that during reperfusion the enolate nucleophile of 2-ACP limits the consequences of mitochondrial-based oxidative stress through scavenging unsaturated aldehyde electrophiles (e.g., acrolein) and chelation of metal ions that catalyze the free radical-generating Fenton reaction. The ability of 2-ACP to reduce IRI when injected prior to ischemia most likely reflects the short duration of this experimental phase (45 minutes) and favorable pharmacokinetics that maintain effective 2-ACP liver concentrations during subsequent reperfusion. These results provide evidence that 2-ACP or an analog might be useful in treating IRI and other conditions that have oxidative stress as a common molecular etiology.


Assuntos
Cetonas/farmacologia , Fígado/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Aldeídos/química , Aldeídos/metabolismo , Animais , Citoproteção , Temperatura Alta , Cetonas/uso terapêutico , Fígado/irrigação sanguínea , Fígado/metabolismo , Fígado/patologia , Masculino , Estresse Oxidativo , Teoria Quântica , Ratos Sprague-Dawley , Traumatismo por Reperfusão/patologia , Succinato Desidrogenase/metabolismo
8.
Neurosci Lett ; 596: 78-83, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25218479

RESUMO

2,5-Hexanedione (HD) and acrylamide (ACR) are considered to be prototypical among chemical toxicants that cause central-peripheral axonopathies characterized by distal axon swelling and degeneration. Because the demise of distal regions was assumed to be causally related to the onset of neurotoxicity, substantial effort was devoted to deciphering the respective mechanisms. Continued research, however, revealed that expression of the presumed hallmark morphological features was dependent upon the daily rate of toxicant exposure. Indeed, many studies reported that the corresponding axonopathic changes were late developing effects that occurred independent of behavioral and/or functional neurotoxicity. This suggested that the toxic axonopathy classification might be based on epiphenomena related to dose-rate. Therefore, the goal of this mini-review is to discuss how quantitative morphometric analyses and the establishment of dose-dependent relationships helped distinguish primary, mechanistically relevant toxicant effects from non-specific consequences. Perhaps more importantly, we will discuss how knowledge of neurotoxicant chemical nature can guide molecular-level research toward a better, more rational understanding of mechanism. Our discussion will focus on HD, the neurotoxic γ-diketone metabolite of the industrial solvents n-hexane and methyl-n-butyl ketone. Early investigations suggested that HD caused giant neurofilamentous axonal swellings and eventual degeneration in CNS and PNS. However, as our review will point out, this interpretation underwent several iterations as the understanding of γ-diketone chemistry improved and more quantitative experimental approaches were implemented. The chemical concepts and design strategies discussed in this mini-review are broadly applicable to the mechanistic studies of other chemicals (e.g., n-propyl bromine, methyl methacrylate) that cause toxic neuropathies.


Assuntos
Doenças do Sistema Nervoso Central/induzido quimicamente , Poluentes Ambientais/toxicidade , Hexanonas/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Axônios/efeitos dos fármacos , Axônios/patologia , Doenças do Sistema Nervoso Central/patologia , Humanos , Doenças do Sistema Nervoso Periférico/patologia
9.
Chem Res Toxicol ; 27(7): 1081-91, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24911545

RESUMO

Aldehydes are electrophilic compounds to which humans are pervasively exposed. Despite a significant health risk due to exposure, the mechanisms of aldehyde toxicity are poorly understood. This ambiguity is likely due to the structural diversity of aldehyde derivatives and corresponding differences in chemical reactions and biological targets. To gain mechanistic insight, we have used parameters based on the hard and soft, acids and bases (HSAB) theory to profile the different aldehyde subclasses with respect to electronic character (softness, hardness), electrophilic reactivity (electrophilic index), and biological nucleophilic targets. Our analyses indicate that short chain aldehydes and longer chain saturated alkanals are hard electrophiles that cause toxicity by forming adducts with hard biological nucleophiles, e.g., primary nitrogen groups on lysine residues. In contrast, α,ß-unsaturated carbonyl derivatives, alkenals, and the α-oxoaldehydes are soft electrophiles that preferentially react with soft nucleophilic thiolate groups on cysteine residues. The aldehydes can therefore be grouped into subclasses according to common electronic characteristics (softness/hardness) and molecular mechanisms of toxicity. As we will discuss, the toxic potencies of these subgroups are generally related to corresponding electrophilicities. For some aldehydes, however, predictions of toxicity based on electrophilicity are less accurate due to inherent physicochemical variables that limit target accessibility, e.g., steric hindrance and solubility. The unsaturated aldehydes are also members of the conjugated type-2 alkene chemical class that includes α,ß-unsaturated amide, ketone, and ester derivatives. Type-2 alkenes are electrophiles of varying softness and electrophilicity that share a common mechanism of toxicity. Therefore, exposure to an environmental mixture of unsaturated carbonyl derivatives could cause "type-2 alkene toxicity" through additive interactions. Finally, we propose that environmentally derived aldehydes can accelerate diseases by interacting with endogenous aldehydes generated during oxidative stress. This review provides a basis for understanding aldehyde mechanisms and environmental toxicity through the context of electronic structure, electrophilicity, and nucleophile target selectivity.


Assuntos
Aldeídos/química , Aldeídos/toxicidade , Animais , Humanos
10.
J Pharmacol Exp Ther ; 346(2): 259-69, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23759509

RESUMO

Our previous research showed that enolates formed from 1,3-dicarbonyl compounds, such as 2-acetylcyclopentanone (2-ACP), could provide protection in cell culture models from electrophile- or oxidative stress-induced toxicity. In the present study, we evaluated the protective abilities of 2-ACP in a mouse model of acetaminophen (APAP) hepatotoxicity. Results show that oral APAP overdose (500 mg/kg) was nearly 90% lethal within 72 hours and that the resulting hepatotoxicity was associated with substantial changes in plasma liver enzyme activities, histopathological indices, and markers of hepatocyte oxidative stress. 2-ACP administered intraperitoneally 20 minutes before APAP completely prevented lethality over a 7-day observation period. This effect was dose-dependent (0.80-2.40 mmol/kg) and was correlated with normalization of measured parameters. Nearly complete protection was afforded when 2-ACP was administered 20 minutes post-APAP, but not 60 minutes after intoxication. Although intraperitoneal administration of N-acetylcysteine (NAC) was not effective over a broad dose range (2.40-7.20 mmol/kg), temporal studies indicated that intraperitoneal NAC was hepatoprotective when injected 60 minutes after APAP intoxication. Because of a loss of function in stomach acid, oral administration of 2-ACP was associated with modest APAP protection. In contrast, NAC administered orally provided dose-dependent (0.80-2.40 mmol/kg) protection against APAP hepatotoxicity. In chemico studies and quantum mechanical calculations indicated that 2-ACP acted as a surrogate nucleophilic target for the reactive electrophilic APAP metabolite N-acetyl-p-benzoquinone imine. Our findings suggest that 2-ACP or a derivative might be useful in treating acquired toxicities associated with electrophilic drugs and metabolites or environmental toxicants.


Assuntos
Acetaminofen/intoxicação , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Cetonas/farmacologia , Acetaminofen/administração & dosagem , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Administração Oral , Animais , Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Injeções Intraperitoneais , Cetonas/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Teoria Quântica
11.
Toxicol Lett ; 219(3): 279-87, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23566896

RESUMO

Acrylamide (ACR) is an electrophilic unsaturated carbonyl derivative that produces neurotoxicity by forming irreversible Michael-type adducts with nucleophilic sulfhydryl thiolate groups on cysteine residues of neuronal proteins. Identifying specific proteins targeted by ACR can lead to a better mechanistic understanding of the corresponding neurotoxicity. Therefore, in the present study, the ACR-adducted proteome in exposed primary immortalized mesencephalic dopaminergic cells (N27) was determined using tandem mass spectrometry (LTQ-Orbitrap). N27 cells were characterized based on the presumed involvement of CNS dopaminergic damage in ACR neurotoxicity. Shotgun proteomics identified a total of 15,243 peptides in N27 cells of which 103 unique peptides exhibited ACR-adducted Cys groups. These peptides were derived from 100 individual proteins and therefore ~0.7% of the N27 cell proteome was adducted. Proteins that contained ACR adducts on multiple peptides included annexin A1 and pleckstrin homology domain-containing family M member 1. Sub-network enrichment analyses indicated that ACR-adducted proteins were involved in processes associated with neuron toxicity, diabetes, inflammation, nerve degeneration and atherosclerosis. These results provide detailed information regarding the ACR-adducted proteome in a dopaminergic cell line. The catalog of affected proteins indicates the molecular sites of ACR action and the respective roles of these proteins in cellular processes can offer insight into the corresponding neurotoxic mechanism.


Assuntos
Acrilamida/efeitos adversos , Neurônios Dopaminérgicos/efeitos dos fármacos , Acrilamida/metabolismo , Acrilamida/farmacologia , Animais , Células Cultivadas , Cisteína/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Proteômica , Ratos
12.
Environ Health Perspect ; 120(12): 1650-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23060388

RESUMO

BACKGROUND: Acrylamide (ACR) produces cumulative neurotoxicity in exposed humans and laboratory animals through a direct inhibitory effect on presynaptic function. OBJECTIVES: In this review, we delineate how knowledge of chemistry provided an unprecedented understanding of the ACR neurotoxic mechanism. We also show how application of the hard and soft, acids and bases (HSAB) theory led to the recognition that the α,ß-unsaturated carbonyl structure of ACR is a soft electrophile that preferentially forms covalent bonds with soft nucleophiles. METHODS: In vivo proteomic and in chemico studies demonstrated that ACR formed covalent adducts with highly nucleophilic cysteine thiolate groups located within active sites of presynaptic proteins. Additional research showed that resulting protein inactivation disrupted nerve terminal processes and impaired neurotransmission. DISCUSSION: ACR is a type-2 alkene, a chemical class that includes structurally related electrophilic environmental pollutants (e.g., acrolein) and endogenous mediators of cellular oxidative stress (e.g., 4-hydroxy-2-nonenal). Members of this chemical family produce toxicity via a common molecular mechanism. Although individual environmental concentrations might not be toxicologically relevant, exposure to an ambient mixture of type-2 alkene pollutants could pose a significant risk to human health. Furthermore, environmentally derived type-2 alkenes might act synergistically with endogenously generated unsaturated aldehydes to amplify cellular damage and thereby accelerate human disease/injury processes that involve oxidative stress. CONCLUSIONS: These possibilities have substantial implications for environmental risk assessment and were realized through an understanding of ACR adduct chemistry. The approach delineated here can be broadly applied because many toxicants of different chemical classes are electrophiles that produce toxicity by interacting with cellular proteins.


Assuntos
Acrilamida/química , Acrilamida/toxicidade , Ecotoxicologia/métodos , Síndromes Neurotóxicas/etiologia , Proteômica/métodos , Acrilamida/metabolismo , Algoritmos , Animais , Humanos , Camundongos , Terminações Nervosas/efeitos dos fármacos , Terminações Nervosas/metabolismo , Terminações Nervosas/patologia , Ratos , Medição de Risco
13.
Chem Res Toxicol ; 25(2): 239-51, 2012 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-22053936

RESUMO

Many chemical toxicants and/or their active metabolites are electrophiles that cause cell injury by forming covalent bonds with nucleophilic targets on biological macromolecules. Covalent reactions between nucleophilic and electrophilic reagents are, however, discriminatory since there is a significant degree of selectivity associated with these interactions. Over the course of the past few decades, the theory of Hard and Soft, Acids and Bases (HSAB) has proven to be a useful tool in predicting the outcome of such reactions. This concept utilizes the inherent electronic characteristic of polarizability to define, for example, reacting electrophiles and nucleophiles as either hard or soft. These HSAB definitions have been successfully applied to chemical-induced toxicity in biological systems. Thus, according to this principle, a toxic electrophile reacts preferentially with biological targets of similar hardness or softness. The soft/hard classification of a xenobiotic electrophile has obvious utility in discerning plausible biological targets and molecular mechanisms of toxicity. The purpose of this perspective is to discuss the HSAB theory of electrophiles and nucleophiles within a toxicological framework. In principle, covalent bond formation can be described by using the properties of their outermost or frontier orbitals. Because these orbital energies for most chemicals can be calculated using quantum mechanical models, it is possible to quantify the relative softness (σ) or hardness (η) of electrophiles or nucleophiles and to subsequently convert this information into useful indices of reactivity. This atomic level information can provide insight into the design of corroborative laboratory research and thereby help investigators discern corresponding molecular sites and mechanisms of toxicant action. The use of HSAB parameters has also been instrumental in the development and identification of potential nucleophilic cytoprotectants that can scavenge toxic electrophiles. Clearly, the difficult task of delineating molecular sites and mechanisms of toxicant action can be facilitated by the application of this quantitative approach.


Assuntos
Ácidos/toxicidade , Álcalis/toxicidade , Xenobióticos/toxicidade , Animais , Humanos , Concentração de Íons de Hidrogênio , Modelos Químicos , Teoria Quântica
14.
Chem Res Toxicol ; 24(12): 2302-11, 2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-22084934

RESUMO

α,ß-Unsaturated carbonyls make up an important class of chemicals involved in environmental toxicity and disease processes. Whereas adduction of cysteine residues on proteins is a well-documented reaction of these chemicals, such a generic effect cannot explain the molecular mechanism of cytotoxicity. Instead, more detailed information is needed regarding the possible specificity and kinetics of cysteine targeting and the quantitative relationship between adduct burden and protein dysfunction. To address these data gaps, we incubated purified human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) with acrylamide (ACR), acrolein, or methylvinyl ketone (MVK). Results show that these α,ß-unsaturated carbonyl toxicants inhibited GAPDH activity in a concentration- and time-dependent manner. The rank order of enzyme inhibition (K(I)) (i.e., ACR ≪ MVK < acrolein) was related to the calculated electrophilic reactivity of each compound and to the corresponding kinetics of cysteine adduct formation. Tandem mass spectrometry revealed that adduct formation was selective at lower concentrations; i.e., ACR preferentially formed adducts with Cys152 (residues 146-162). At higher concentrations, ACR also formed adducts with Cys156 and Cys247 (residues 235-248). Adduct formation at Cys152 was correlated to enzyme inhibition, which is consistent with the regulatory role of this residue in enzyme function and its location within the GAPDH active site. Further analyses indicated that Cys152 was present in a pK(a)-lowering microenvironment (pK(a) = 6.03), and at physiological pH, the corresponding sulfhydryl group exists in the highly reactive nucleophilic thiolate state. These data suggest a general cytotoxic mechanism in which electrophilic α,ß-unsaturated carbonyls selectively form adducts with reactive nucleophilic cysteine residues specifically associated with the active sites of proteins. These specialized cysteine residues are toxicologically relevant molecular targets, because chemical derivatization causes loss of protein function.


Assuntos
Aldeídos/química , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Cetonas/química , Acroleína/química , Acrilamida/química , Aldeídos/farmacologia , Butanonas/química , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Ativação Enzimática/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Humanos , Concentração de Íons de Hidrogênio , Cetonas/farmacologia , Cinética , Espectrometria de Massas em Tandem
15.
Toxicol Lett ; 205(1): 1-7, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21540084

RESUMO

Acrylamide (ACR) intoxication is associated with selective nerve terminal damage in the central and peripheral nervous systems. As a soft electrophile, ACR could form adducts with nucleophilic sulfhydryl groups on cysteine residues of kelch-like erythroid cell-derived protein with CNS homology-associated protein 1 (Keap1) leading to dissociation of the transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 activation of the antioxidant-responsive element (ARE) and subsequent upregulated gene expression of phase II detoxification enzymes and anitoxidant proteins might provide protection in neuronal regions with transcriptional capabilities (e.g., cell body). In contrast, non-transcriptional cell regions (axons, nerve terminals) might be vulnerable to electrophile-induced damage. To test this possibility, immunoblot analysis was used to measure protein products of Nrf2-activated ARE genes in nerve terminals and in cytosolic/nuclear factions of neuronal cell bodies isolated from rats intoxicated at two different ACR dose-rates; i.e., 50mg/kg/d×10 days, 21mg/kg/d×38 days. To detect possible differences in cell-specific induction, the cytoprotective response to ACR intoxication was determined in hepatic cells. Results show that control brain and hepatic cell fractions exhibited distinct subcellular distributions of Nrf2, Keap1 and several ARE protein products. ACR intoxication, however, did not alter the levels of these proteins in synaptosomal, brain cytoplasm or liver cell fractions. These data indicate that ACR was an insufficient electrophilic signal for ARE induction in all subcellular fractions tested. Because a cytoprotective response was not induced in any fraction, nerve terminal vulnerability to ACR cannot be ascribed to the absence of transcription-based defense mechanisms in this neuronal region.


Assuntos
Acrilamida/toxicidade , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/fisiologia , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/metabolismo , Elementos de Resposta/fisiologia , Animais , Western Blotting , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Separação Celular , Centrifugação , Eletroforese em Gel de Poliacrilamida , Hepatócitos/efeitos dos fármacos , Terminações Nervosas/efeitos dos fármacos , Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Sinaptossomos/metabolismo , Sinaptossomos/fisiologia
16.
J Neurochem ; 116(1): 132-43, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21054388

RESUMO

Curcumin, phloretin and structurally related phytopolyphenols have well-described neuroprotective properties that appear to be at least partially mediated by 1,3-dicarbonyl enol substructures that form nucleophilic enolates. Based on their structural similarities, we tested the hypothesis that enolates of simple 1,3-dicarbonyl compounds such as acetylacetone might also possess neuroprotective actions. Our results show that the ß-diketones, particularly 2-acetylcyclopentanone, protected rat striatal synaptosomes and a neuronal cell line from thiol loss and toxicity induced by acrolein, an electrophilic α,ß-unsaturated aldehyde. The 1,3-dicarbonyl compounds also provided substantial cytoprotection against toxicity induced by hydrogen peroxide in a cellular model of oxidative stress. Initial chemical characterization in cell-free systems indicated that the 1,3-dicarbonyl compounds acted as surrogate nucleophilic targets that slowed the rate of sulfhydryl loss caused by acrolein. Although the selected 1,3-dicarbonyl congeners did not scavenge free radicals, metal ion chelation was a significant property of both acetylacetone and 2-acetylcyclopentanone. Our data suggest that the 1,3-dicarbonyl enols represent a new class of neuroprotectants that scavenge electrophilic metal ions and unsaturated aldehydes through their nucleophilic enolate forms. As such, these enols might be rational candidates for treatment of acute or chronic neurodegenerative conditions that have oxidative stress as a common molecular etiology.


Assuntos
Curcumina/análogos & derivados , Cetonas/química , Fármacos Neuroprotetores/química , Animais , Linhagem Celular Tumoral , Curcumina/classificação , Curcumina/farmacologia , Cetonas/farmacologia , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/classificação , Fármacos Neuroprotetores/farmacologia , Polifenóis/química , Polifenóis/classificação , Polifenóis/farmacologia , Ratos , Ratos Sprague-Dawley
17.
Toxicol Sci ; 117(1): 180-9, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20554699

RESUMO

2,5-Hexanedione (HD) intoxication is associated with axon atrophy that might be responsible for the characteristic gait abnormalities, hindlimb skeletal muscle weakness and other neurological deficits that accompany neurotoxicity. Although previous mechanistic research focused on neurofilament triplet proteins (NFL, NFM, NFH), other cytoskeletal targets are possible. Therefore, to identify potential non-NF protein targets, we characterized the effects of HD on protein-protein interactions in cosedimentation assays using microtubules and NFs prepared from spinal cord of rats intoxicated at different daily dose rates (175 and 400 mg/kg/day). Results indicate that HD did not alter the presence of alpha- or beta-tubulins in these preparations, nor were changes noted in the distribution of either anterograde (KIF1A, KIF3, KIF5) or retrograde (dynein) molecular motors. The cosedimentation of dynactin, a dynein-associated protein, also was not affected. Immunoblot analysis of microtubule-associated proteins (MAPs) in microtubule preparations revealed substantial reductions (45-80%) in MAP1A, MAP1B heavy chain, MAP2, and tau regardless of HD dose rate. MAP1B light chain content was not altered. Finally, HD intoxication did not influence native NF protein content in either preparation. As per previous research, microtubule and NF preparations were enriched in high-molecular weight NF species. However, these NF derivatives were common to both HD and control samples, suggesting a lack of pathognomonic relevance. These data indicate that, although motor proteins were not affected, HD selectively impaired MAP-microtubule binding, presumably through adduction of lysine residues that mediate such interactions. Given their critical role in cytoskeletal physiology, MAPs could represent a relevant target for the induction of gamma-diketone axonopathy.


Assuntos
Axônios/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Cetonas/toxicidade , Proteínas Motores Moleculares/metabolismo , Bainha de Mielina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Peso Corporal , Sistema Nervoso Central/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
18.
Chem Res Toxicol ; 22(9): 1499-508, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19610654

RESUMO

Acrolein and 4-hydroxy-2-nonenal (HNE) are byproducts of lipid peroxidation and are thought to play central roles in various traumatic injuries and disease states that involve cellular oxidative stress, for example, spinal cord trauma, diabetes, and Alzheimer's disease. In this review, we will discuss the chemical attributes of acrolein and HNE that determine their toxicities. Specifically, these aldehydes are classified as type 2 alkenes and are characterized by an alpha,beta-unsaturated carbonyl structure. This structure is a conjugated system that contains mobile pi-electrons. The carbonyl oxygen atom is electronegative and can promote the withdrawal of mobile electron density from the beta-carbon atom causing regional electron deficiency. On the basis of this type of electron polarizability, both acrolein and HNE are considered to be soft electrophiles that preferentially form 1,4-Michael type adducts with soft nucleophiles. Proteomic, quantum mechanical, and kinetic data will be presented, indicating that cysteine sulfhydryl groups are the primary soft nucleophilic targets of acrolein and HNE. This is in contrast to nitrogen groups on harder biological nucleophiles such as lysine or histidine residues. The toxicological outcome of adduct formation is not only dependent upon residue selectivity but also the importance of the targeted amino acid in protein function or structure. In attempting to discern the toxicological significance of a given adduct, we will consider the normal roles of cysteine, lysine, and histidine residues in proteins and the relative merits of corresponding adducts in the manifestations of diseases or toxic states. Understanding the molecular actions of acrolein and HNE could provide insight into many pathogenic conditions that involve initial cellular oxidative stress and could, thereby, offer new efficacious avenues of pharmacological defense.


Assuntos
Acroleína/toxicidade , Aldeídos/toxicidade , Reagentes de Ligações Cruzadas/toxicidade , Acroleína/química , Aldeídos/química , Reagentes de Ligações Cruzadas/química , Cinética , Estresse Oxidativo , Proteômica , Teoria Quântica
19.
Toxicol Sci ; 107(1): 171-81, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18996889

RESUMO

4-Hydroxy-2-nonenal (HNE) is an aldehyde by-product of lipid peroxidation that is presumed to play a primary role in certain neuropathogenic states (e.g., Alzheimer disease, spinal cord trauma). Although the molecular mechanism of neurotoxicity is unknown, proteomic analyses (e.g., tandem mass spectrometry) have demonstrated that this soft electrophile preferentially forms Michael-type adducts with cysteine sulfhydryl groups. In this study, we characterized HNE synaptosomal toxicity and evaluated the role of putative nucleophilic amino acid targets. Results show that HNE exposure of striatal synaptosomes inhibited (3)H-dopamine membrane transport and vesicular storage. These concentration-dependent effects corresponded to parallel decreases in synaptosomal sulfhydryl content. Calculations of quantum mechanical parameters (softness, electrophilicity) that describe the interactions of an electrophile with its nucleophilic target indicated that the relative softness of HNE was directly related to both the second-order rate constant (k(2)) for sulfhydryl adduct formation and corresponding neurotoxic potency (IC(50)). Computation of additional quantum mechanical parameters that reflect the relative propensity of a nucleophile to interact with a given electrophile (chemical potential, nucleophilicity) indicated that the sulfhydryl thiolate state was the HNE target. In support of this, we showed that the rate of adduct formation was related to pH and that N-acetyl-L-cysteine, but not N-acetyl-L-lysine or beta-alanyl-L-histidine, reduced in vitro HNE neurotoxicity. These data suggest that, like other type 2 alkenes, HNE produces nerve terminal toxicity by forming adducts with sulfhydryl thiolates on proteins involved in neurotransmission.


Assuntos
Aldeídos/farmacologia , Corpo Estriado/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos , Acetilcisteína/farmacologia , Acroleína/farmacologia , Aminoácidos/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Carnosina/metabolismo , Corpo Estriado/citologia , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Concentração de Íons de Hidrogênio , Masculino , Mecânica , Dinâmica não Linear , Estresse Oxidativo/efeitos dos fármacos , Farmacocinética , Ratos , Ratos Sprague-Dawley , Análise de Regressão , Compostos de Sulfidrila/metabolismo , Sinaptossomos/metabolismo , Vesículas Transportadoras/efeitos dos fármacos , Trítio/metabolismo
20.
J Agric Food Chem ; 56(15): 5994-6003, 2008 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-18624437

RESUMO

Acrylamide (ACR) has demonstrable neurotoxic effects in animals and humans that stem from its chemical behavior as a soft electrophilic alpha,beta-unsaturated carbonyl compound. Evidence is presented that the nerve terminal is a primary site of ACR action and that inhibition of neurotransmission mediates the development of neurological deficits. At the mechanistic level, recent proteomic, neurochemical, and kinetic data are considered, which suggest that ACR inhibits neurotransmission by disrupting presynaptic nitric oxide (NO) signaling. Nerve-terminal damage likely mediates the neurological complications that accompany the occupational exposure of humans to ACR. In addition, the proposed molecular mechanism of synaptotoxicity has substantial implications for the pathogenesis of Alzheimer's disease and other neurodegenerative conditions that involve neuronal oxidative stress and the secondary endogenous generation of acrolein and other conjugated carbonyl chemicals.


Assuntos
Acrilamida/toxicidade , Terminações Nervosas/efeitos dos fármacos , Doenças Neurodegenerativas/induzido quimicamente , Alcenos/metabolismo , Doença de Alzheimer/induzido quimicamente , Animais , Humanos , Degeneração Neural/induzido quimicamente , Doenças do Sistema Nervoso/induzido quimicamente , Óxido Nítrico/metabolismo , Exposição Ocupacional/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA