RESUMO
Bacterial alginate initially consists of 1-4-linked ß-D-mannuronic acid residues (M) which can be later epimerized to α-L-guluronic acid (G). The family of AlgE mannuronan C-5-epimerases from Azotobacter vinelandii has been extensively studied, and three genes putatively encoding AlgE-type epimerases have recently been identified in the genome of Azotobacter chroococcum. The three A. chroococcum genes, here designated AcalgE1, AcalgE2 and AcalgE3, were recombinantly expressed in Escherichia coli and the gene products were partially purified. The catalytic activities of the enzymes were stimulated by the addition of calcium ions in vitro. AcAlgE1 displayed epimerase activity and was able to introduce long G-blocks in the alginate substrate, preferentially by attacking M residues next to pre-existing G residues. AcAlgE2 and AcAlgE3 were found to display lyase activities with a substrate preference toward M-alginate. AcAlgE2 solely accepted M residues in the positions - 1 and + 2 relative to the cleavage site, while AcAlgE3 could accept either M or G residues in these two positions. Both AcAlgE2 and AcAlgE3 were bifunctional and could also catalyze epimerization of M to G. Together, we demonstrate that A. chroococcum encodes three different AlgE-like alginate-modifying enzymes and the biotechnological and biological impact of these findings are discussed.
Assuntos
Azotobacter vinelandii/enzimologia , Azotobacter/enzimologia , Proteínas de Bactérias/metabolismo , Carboidratos Epimerases/metabolismo , Alginatos/química , Alginatos/metabolismo , Sequência de Aminoácidos , Azotobacter/química , Azotobacter/genética , Azotobacter vinelandii/química , Azotobacter vinelandii/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Carboidratos Epimerases/química , Carboidratos Epimerases/genética , Genes Bacterianos , Família Multigênica , Alinhamento de Sequência , Especificidade por SubstratoRESUMO
BACKGROUND: Advantages of translocation of recombinant proteins to the periplasm in Escherichia coli include simplified downstream processing, and improved folding and in vivo activity of the target protein. There are, however, problems encountered in the periplasmic production that can be associated with the incorrect formation of disulfide bonds, incomplete cleavage of the signal peptide, and proteolytic degradation. A common strategy used to overcome these difficulties involves manipulating the cellular levels of proteases and periplasmic folding assistants like chaperones, signal peptide peptidases or thiol-disulfide oxidoreductases. To date, this has been achieved by plasmid-based over-expression or knockouts of the relevant genes. RESULTS: We changed the translation efficiencies of five native E. coli proteins, DsbA, DsbB, Skp, SppA, and DegP, by modifying the strength of their ribosome binding sites (RBS). The genomic RBS sequences were replaced with synthetic ones that provided a predicted translation initiation rate. Single- and double-gene mutant strains were created and tested for production of two pharmaceutically relevant proteins, PelB-scFv173-2-5-AP and OmpA-GM-CSF. Almost all the single-gene mutant strains showed improved periplasmic production of at least one of the recombinant proteins. No further positive effects were observed when the mutations were combined. CONCLUSIONS: Our findings confirm that our strain engineering approach involving translational regulation of endogenous proteins, in addition to plasmid-based methods, can be used to manipulate the cellular levels of periplasmic folding assistants and proteases to improve the yields of translocated recombinant proteins. The positive effects of SppA overexpression should be further investigated in E. coli.
Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Peptídeo Hidrolases/metabolismo , Periplasma/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Transporte Proteico , Proteínas Recombinantes/metabolismo , Proteínas de Bactérias , Proteínas de Ligação a DNA , Endopeptidases , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Edição de Genes , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Proteínas de Membrana , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Plasmídeos , Isomerases de Dissulfetos de Proteínas , Processamento de Proteína Pós-Traducional/genética , Proteínas Recombinantes/genéticaRESUMO
BACKGROUND: Bacteria are widely used as hosts for recombinant protein production due to their rapid growth, simple media requirement and ability to produce high yields of correctly folded proteins. Overproduction of recombinant proteins may impose metabolic burden to host cells, triggering various stress responses, and the ability of the cells to cope with such stresses is an important factor affecting both cell growth and product yield. RESULTS: Here, we present a versatile plasmid-based reporter system for efficient analysis of metabolic responses associated with availability of cellular resources utilized for recombinant protein production and host capacity to synthesize correctly folded proteins. The reporter plasmid is based on the broad-host range RK2 minimal replicon and harbors the strong and inducible XylS/Pm regulator/promoter system, the ppGpp-regulated ribosomal protein promoter PrpsJ, and the σ32-dependent synthetic tandem promoter Pibpfxs, each controlling expression of one distinguishable fluorescent protein. We characterized the responsiveness of all three reporters in Escherichia coli by quantitative fluorescence measurements in cell cultures cultivated under different growth and stress conditions. We also validated the broad-host range application potential of the reporter plasmid by using Pseudomonas putida and Azotobacter vinelandii as hosts. CONCLUSIONS: The plasmid-based reporter system can be used for analysis of the total inducible recombinant protein production, the translational capacity measured as transcription level of ribosomal protein genes and the heat shock-like response revealing aberrant protein folding in all studied Gram-negative bacterial strains.
Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Reporter/genética , Plasmídeos/genética , Proteínas Recombinantes/biossíntese , Clonagem MolecularRESUMO
The XylS/Pm regulator/promoter system originating from the Pseudomonas putida TOL plasmid pWW0 is widely used for regulated low- and high-level recombinant expression of genes and gene clusters in Escherichia coli and other bacteria. Induction of this system can be graded by using different cheap benzoic acid derivatives, which enter cells by passive diffusion, operate in a dose-dependent manner and are typically not metabolized by the host cells. Combinatorial mutagenesis and selection using the bla gene encoding ß-lactamase as a reporter have demonstrated that the Pm promoter, the DNA sequence corresponding to the 5' untranslated end of its cognate mRNA and the xylS coding region can be modified and improved relative to various types of applications. By combining such mutant genetic elements, altered and extended expression profiles were achieved. Due to their unique properties, obtained systems serve as a genetic toolbox valuable for heterologous protein production and metabolic engineering, as well as for basic studies aiming at understanding fundamental parameters affecting bacterial gene expression. The approaches used to modify XylS/Pm should be adaptable for similar improvements also of other microbial expression systems. In this review, we summarize constructions, characteristics, refinements and applications of expression tools using the XylS/Pm system.
Assuntos
Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Engenharia Metabólica/métodos , Regiões Promotoras Genéticas , Proteínas Recombinantes/biossíntese , Transativadores/genética , Ativação Transcricional/efeitos dos fármacos , Ácido Benzoico/metabolismo , Proteínas Recombinantes/genéticaRESUMO
INTRODUCTION: Small intestinal bacterial overgrowth syndrome (SIBO) is defined as an increased number of nonpathogenic bacteria over 10(5) organisms in 1 millilitre of small intestine content. The most common predisposing factors include, among others, gut motility disorders and chronic use of proton pump inhibitors. The results of recent studies indicate the importance of SIBO in gastrointestinal diseases. AIM: To assess the prevalence of SIBO in children with abdominal pain. MATERIAL AND METHODS: One hundred children (59 girls and 41 boys) aged from 4 to 17 years (mean age: 10.47 ±3.73 years), hospitalised due to abdominal pain, were enrolled in the study. Hydrogen breath test (HBT) with lactulose was established among all patients. Expired air was analysed using a Gastrolyzer (Bedfont). RESULTS: The HBT result was positive in 63 (63%) children with abdominal pain; including 40 girls (67.8%) and 23 boys (56.1%). The test was positive in the group of 29 (46%) children aged under 10 years and in the group of 34 (54%) children aged over 10 years. Among the patients who reported for the control study 88% achieved a normalisation of HBT after treatment. CONCLUSIONS: The prevalence of positive HBT results in the group of patients with abdominal pain is over 60%. Small intestinal bacterial overgrowth syndrome should be considered as one of the causes of abdominal pain in children. The SIBO in children shows a good response to treatment.