Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 47(7): e38, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30759232

RESUMO

MOTIVATION: Cancer is a complex disease that involves rapidly evolving cells, often forming multiple distinct clones. In order to effectively understand progression of a patient-specific tumor, one needs to comprehensively sample tumor DNA at multiple time points, ideally obtained through inexpensive and minimally invasive techniques. Current sequencing technologies make the 'liquid biopsy' possible, which involves sampling a patient's blood or urine and sequencing the circulating cell free DNA (cfDNA). A certain percentage of this DNA originates from the tumor, known as circulating tumor DNA (ctDNA). The ratio of ctDNA may be extremely low in the sample, and the ctDNA may originate from multiple tumors or clones. These factors present unique challenges for applying existing tools and workflows to the analysis of ctDNA, especially in the detection of structural variations which rely on sufficient read coverage to be detectable. RESULTS: Here we introduce SViCT , a structural variation (SV) detection tool designed to handle the challenges associated with cfDNA analysis. SViCT can detect breakpoints and sequences of various structural variations including deletions, insertions, inversions, duplications and translocations. SViCT extracts discordant read pairs, one-end anchors and soft-clipped/split reads, assembles them into contigs, and re-maps contig intervals to a reference genome using an efficient k-mer indexing approach. The intervals are then joined using a combination of graph and greedy algorithms to identify specific structural variant signatures. We assessed the performance of SViCT and compared it to state-of-the-art tools using simulated cfDNA datasets with properties matching those of real cfDNA samples. The positive predictive value and sensitivity of our tool was superior to all the tested tools and reasonable performance was maintained down to the lowest dilution of 0.01% tumor DNA in simulated datasets. Additionally, SViCT was able to detect all known SVs in two real cfDNA reference datasets (at 0.6-5% ctDNA) and predict a novel structural variant in a prostate cancer cohort. AVAILABILITY: SViCT is available at https://github.com/vpc-ccg/svict. Contact:faraz.hach@ubc.ca.


Assuntos
Algoritmos , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Análise Mutacional de DNA/métodos , Mutação , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Conjuntos de Dados como Assunto , Humanos , Masculino , Neoplasias da Próstata/genética , Sensibilidade e Especificidade
2.
Gigascience ; 7(6)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29757368

RESUMO

Background: Treatment-induced neuroendocrine prostate cancer (tNEPC) is an aggressive variant of late-stage metastatic castrate-resistant prostate cancer that commonly arises through neuroendocrine transdifferentiation (NEtD). Treatment options are limited, ineffective, and, for most patients, result in death in less than a year. We previously developed a first-in-field patient-derived xenograft (PDX) model of NEtD. Longitudinal deep transcriptome profiling of this model enabled monitoring of dynamic transcriptional changes during NEtD and in the context of androgen deprivation. Long non-coding RNA (lncRNA) are implicated in cancer where they can control gene regulation. Until now, the expression of lncRNAs during NEtD and their clinical associations were unexplored. Results: We implemented a next-generation sequence analysis pipeline that can detect transcripts at low expression levels and built a genome-wide catalogue (n = 37,749) of lncRNAs. We applied this pipeline to 927 clinical samples and our high-fidelity NEtD model LTL331 and identified 821 lncRNAs in NEPC. Among these are 122 lncRNAs that robustly distinguish NEPC from prostate adenocarcinoma (AD) patient tumours. The highest expressed lncRNAs within this signature are H19, LINC00617, and SSTR5-AS1. Another 742 are associated with the NEtD process and fall into four distinct patterns of expression (NEtD lncRNA Class I, II, III, and IV) in our PDX model and clinical samples. Each class has significant (z-scores >2) and unique enrichment for transcription factor binding site (TFBS) motifs in their sequences. Enriched TFBS include (1) TP53 and BRN1 in Class I, (2) ELF5, SPIC, and HOXD1 in Class II, (3) SPDEF in Class III, (4) HSF1 and FOXA1 in Class IV, and (5) TWIST1 when merging Class III with IV. Common TFBS in all NEtD lncRNA were also identified and include E2F, REST, PAX5, PAX9, and STAF. Interrogation of the top deregulated candidates (n = 100) in radical prostatectomy adenocarcinoma samples with long-term follow-up (median 18 years) revealed significant clinicopathological associations. Specifically, we identified 25 that are associated with rapid metastasis following androgen deprivation therapy (ADT). Two of these lncRNAs (SSTR5-AS1 and LINC00514) stratified patients undergoing ADT based on patient outcome. Discussion: To date, a comprehensive characterization of the dynamic landscape of lncRNAs during the NEtD process has not been performed. A temporal analysis of the PDX-based NEtD model has for the first time provided this dynamic landscape. TFBS analysis identified NEPC-related TF motifs present within the NEtD lncRNA sequences, suggesting functional roles for these lncRNAs in NEPC pathogenesis. Furthermore, select NEtD lncRNAs appear to be associated with metastasis and patients receiving ADT. Treatment-related metastasis is a clinical consequence of NEPC tumours. Top candidate lncRNAs FENDRR, H19, LINC00514, LINC00617, and SSTR5-AS1 identified in this study are implicated in the development of NEPC. We present here for the first time a genome-wide catalogue of NEtD lncRNAs that characterize the transdifferentiation process and a robust NEPC lncRNA patient expression signature. To accomplish this, we carried out the largest integrative study that applied a PDX NEtD model to clinical samples. These NEtD and NEPC lncRNAs are strong candidates for clinical biomarkers and therapeutic targets and warrant further investigation.


Assuntos
Tumores Neuroendócrinos/genética , Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , Animais , Sítios de Ligação , Transdiferenciação Celular/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Metástase Neoplásica , Tumores Neuroendócrinos/patologia , Motivos de Nucleotídeos/genética , Fenótipo , Neoplasias da Próstata/patologia , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Nat Genet ; 50(6): 814-824, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29808028

RESUMO

The androgen receptor (AR) plays a critical role in the development of the normal prostate as well as prostate cancer. Using an integrative transcriptomic analysis of prostate cancer cell lines and tissues, we identified ARLNC1 (AR-regulated long noncoding RNA 1) as an important long noncoding RNA that is strongly associated with AR signaling in prostate cancer progression. Not only was ARLNC1 induced by the AR protein, but ARLNC1 stabilized the AR transcript via RNA-RNA interaction. ARLNC1 knockdown suppressed AR expression, global AR signaling and prostate cancer growth in vitro and in vivo. Taken together, these data support a role for ARLNC1 in maintaining a positive feedback loop that potentiates AR signaling during prostate cancer progression and identify ARLNC1 as a novel therapeutic target.


Assuntos
Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , Receptores Androgênicos/genética , Androgênios/genética , Androgênios/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Próstata/fisiologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Longo não Codificante/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais
4.
Bioinformatics ; 34(18): 3101-3110, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29617966

RESUMO

Motivation: Long non-coding RNAs (lncRNAs) are defined as transcripts longer than 200 nt that do not get translated into proteins. Often these transcripts are processed (spliced, capped and polyadenylated) and some are known to have important biological functions. However, most lncRNAs have unknown or poorly understood functions. Nevertheless, because of their potential role in cancer, lncRNAs are receiving a lot of attention, and the need for computational tools to predict their possible mechanisms of action is more than ever. Fundamentally, most of the known lncRNA mechanisms involve RNA-RNA and/or RNA-protein interactions. Through accurate predictions of each kind of interaction and integration of these predictions, it is possible to elucidate potential mechanisms for a given lncRNA. Results: Here, we introduce MechRNA, a pipeline for corroborating RNA-RNA interaction prediction and protein binding prediction for identifying possible lncRNA mechanisms involving specific targets or on a transcriptome-wide scale. The first stage uses a version of IntaRNA2 with added functionality for efficient prediction of RNA-RNA interactions with very long input sequences, allowing for large-scale analysis of lncRNA interactions with little or no loss of optimality. The second stage integrates protein binding information pre-computed by GraphProt, for both the lncRNA and the target. The final stage involves inferring the most likely mechanism for each lncRNA/target pair. This is achieved by generating candidate mechanisms from the predicted interactions, the relative locations of these interactions and correlation data, followed by selection of the most likely mechanistic explanation using a combined P-value. We applied MechRNA on a number of recently identified cancer-related lncRNAs (PCAT1, PCAT29 and ARLnc1) and also on two well-studied lncRNAs (PCA3 and 7SL). This led to the identification of hundreds of high confidence potential targets for each lncRNA and corresponding mechanisms. These predictions include the known competitive mechanism of 7SL with HuR for binding on the tumor suppressor TP53, as well as mechanisms expanding what is known about PCAT1 and ARLn1 and their targets BRCA2 and AR, respectively. For PCAT1-BRCA2, the mechanism involves competitive binding with HuR, which we confirmed using HuR immunoprecipitation assays. Availability and implementation: MechRNA is available for download at https://bitbucket.org/compbio/mechrna. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
RNA Longo não Codificante/genética , Fenômenos Bioquímicos , Proteínas/metabolismo , Software , Transcriptoma
5.
Bioinformatics ; 34(10): 1672-1681, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29267878

RESUMO

Motivation: Rapid advancement in high throughput genome and transcriptome sequencing (HTS) and mass spectrometry (MS) technologies has enabled the acquisition of the genomic, transcriptomic and proteomic data from the same tissue sample. We introduce a computational framework, ProTIE, to integratively analyze all three types of omics data for a complete molecular profile of a tissue sample. Our framework features MiStrVar, a novel algorithmic method to identify micro structural variants (microSVs) on genomic HTS data. Coupled with deFuse, a popular gene fusion detection method we developed earlier, MiStrVar can accurately profile structurally aberrant transcripts in tumors. Given the breakpoints obtained by MiStrVar and deFuse, our framework can then identify all relevant peptides that span the breakpoint junctions and match them with unique proteomic signatures. Observing structural aberrations in all three types of omics data validates their presence in the tumor samples. Results: We have applied our framework to all The Cancer Genome Atlas (TCGA) breast cancer Whole Genome Sequencing (WGS) and/or RNA-Seq datasets, spanning all four major subtypes, for which proteomics data from Clinical Proteomic Tumor Analysis Consortium (CPTAC) have been released. A recent study on this dataset focusing on SNVs has reported many that lead to novel peptides. Complementing and significantly broadening this study, we detected 244 novel peptides from 432 candidate genomic or transcriptomic sequence aberrations. Many of the fusions and microSVs we discovered have not been reported in the literature. Interestingly, the vast majority of these translated aberrations, fusions in particular, were private, demonstrating the extensive inter-genomic heterogeneity present in breast cancer. Many of these aberrations also have matching out-of-frame downstream peptides, potentially indicating novel protein sequence and structure. Availability and implementation: MiStrVar is available for download at https://bitbucket.org/compbio/mistrvar, and ProTIE is available at https://bitbucket.org/compbio/protie. Contact: cenksahi@indiana.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias da Mama/genética , Fusão Gênica , Proteínas de Neoplasias/genética , Proteogenômica/métodos , Software , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Espectrometria de Massas/métodos , Proteínas de Neoplasias/análise , Análise de Sequência de RNA/métodos
6.
Nat Commun ; 7: 12791, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27666543

RESUMO

Molecular classification of cancers into subtypes has resulted in an advance in our understanding of tumour biology and treatment response across multiple tumour types. However, to date, cancer profiling has largely focused on protein-coding genes, which comprise <1% of the genome. Here we leverage a compendium of 58,648 long noncoding RNAs (lncRNAs) to subtype 947 breast cancer samples. We show that lncRNA-based profiling categorizes breast tumours by their known molecular subtypes in breast cancer. We identify a cohort of breast cancer-associated and oestrogen-regulated lncRNAs, and investigate the role of the top prioritized oestrogen receptor (ER)-regulated lncRNA, DSCAM-AS1. We demonstrate that DSCAM-AS1 mediates tumour progression and tamoxifen resistance and identify hnRNPL as an interacting protein involved in the mechanism of DSCAM-AS1 action. By highlighting the role of DSCAM-AS1 in breast cancer biology and treatment resistance, this study provides insight into the potential clinical implications of lncRNAs in breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , RNA Longo não Codificante/metabolismo , Antineoplásicos Hormonais/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Invasividade Neoplásica , RNA Longo não Codificante/genética , Receptores de Estrogênio , Tamoxifeno/farmacologia
7.
BMC Bioinformatics ; 11: 229, 2010 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-20459620

RESUMO

BACKGROUND: Modern high throughput experimental techniques such as DNA microarrays often result in large lists of genes. Computational biology tools such as clustering are then used to group together genes based on their similarity in expression profiles. Genes in each group are probably functionally related. The functional relevance among the genes in each group is usually characterized by utilizing available biological knowledge in public databases such as Gene Ontology (GO), KEGG pathways, association between a transcription factor (TF) and its target genes, and/or gene networks. RESULTS: We developed GOAL: Gene Ontology AnaLyzer, a software tool specifically designed for the functional evaluation of gene groups. GOAL implements and supports efficient and statistically rigorous functional interpretations of gene groups through its integration with available GO, TF-gene association data, and association with KEGG pathways. In order to facilitate more specific functional characterization of a gene group, we implement three GO-tree search strategies rather than one as in most existing GO analysis tools. Furthermore, GOAL offers flexibility in deployment. It can be used as a standalone tool, a plug-in to other computational biology tools, or a web server application. CONCLUSION: We developed a functional evaluation software tool, GOAL, to perform functional characterization of a gene group. GOAL offers three GO-tree search strategies and combines its strength in function integration, portability and visualization, and its flexibility in deployment. Furthermore, GOAL can be used to evaluate and compare gene groups as the output from computational biology tools such as clustering algorithms.


Assuntos
Genes , Genômica/métodos , Software , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA