Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 15: 1340166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681141

RESUMO

Background: Flavin monooxygenases (FMOs) are enzymes responsible for the oxidation of a broad spectrum of exogenous and endogenous amines. There is increasing evidence that trimethylamine (TMA), a compound produced by gut bacteria and also recognized as an industrial pollutant, contributes to cardiovascular diseases. FMOs convert TMA into trimethylamine oxide (TMAO), which is an emerging marker of cardiovascular risk. This study hypothesized that blood pressure phenotypes in rats might be associated with variations in the expression of FMOs. Methods: The expression of FMO1, FMO3, and FMO5 was evaluated in the kidneys, liver, lungs, small intestine, and large intestine of normotensive male Wistar-Kyoto rats (WKY) and two distinct hypertensive rat models: spontaneously hypertensive rats (SHRs) and WKY rats with angiotensin II-induced hypertension (WKY-ANG). Plasma concentrations of TMA and TMAO were measured at baseline and after intravenous administration of TMA using liquid chromatography-mass spectrometry (LC-MS). Results: We found that the expression of FMOs in WKY, SHR, and WKY-ANG rats was in the descending order of FMO3 > FMO1 >> FMO5. The highest expression of FMOs was observed in the liver. Notably, SHRs exhibited a significantly elevated expression of FMO3 in the liver compared to WKY and WKY-ANG rats. Additionally, the plasma TMAO/TMA ratio was significantly higher in SHRs than in WKY rats. Conclusion: SHRs demonstrate enhanced expression of FMO3 and a higher plasma TMAO/TMA ratio. The variability in the expression of FMOs and the metabolism of amines might contribute to the hypertensive phenotype observed in SHRs.

2.
J Transl Med ; 20(1): 470, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243862

RESUMO

BACKGROUND: Trimethylamine oxide (TMAO) is a biomarker in cardiovascular and renal diseases. TMAO originates from the oxidation of trimethylamine (TMA), a product of gut microbiota and manufacturing industries-derived pollutant, by flavin monooxygenases (FMOs). The effect of chronic exposure to TMA on cardiovascular and renal systems is undetermined. METHODS: Metabolic, hemodynamic, echocardiographic, biochemical and histopathological evaluations were performed in 12-week-old male SPRD rats receiving water (controls) or TMA (200 or 500 µM/day) in water for 18 weeks. TMA and TMAO levels, the expression of FMOs and renin-angiotensin system (RAS) genes were evaluated in various tissues. RESULTS: In comparison to controls, rats receiving high dose of TMA had significantly increased arterial systolic blood pressure (126.3 ± 11.4 vs 151.2 ± 19.9 mmHg; P = 0.01), urine protein to creatinine ratio (1.6 (1.5; 2.8) vs 3.4 (3.3; 4.2); P = 0.01), urine KIM-1 levels (2338.3 ± 732.0 vs. 3519.0 ± 953.0 pg/mL; P = 0.01), and hypertrophy of the tunica media of arteries and arterioles (36.61 ± 0.15 vs 45.05 ± 2.90 µm, P = 0.001 and 18.44 ± 0.62 vs 23.79 ± 2.60 µm, P = 0.006; respectively). Mild degeneration of renal bodies with glomerulosclerosis was also observed. There was no significant difference between the three groups in body weight, water-electrolyte balance, echocardiographic parameters and RAS expression. TMA groups had marginally increased 24 h TMA urine excretion, whereas serum levels and 24 h TMAO urine excretion were increased up to 24-fold, and significantly increased TMAO levels in the liver, kidneys and heart. TMA groups had lower FMOs expression in the kidneys. CONCLUSIONS: Chronic exposure to TMA increases blood pressure and increases markers of kidney damage, including proteinuria and KIM-1. TMA is rapidly oxidized to TMAO in rats, which may limit the toxic effects of TMA on other organs.


Assuntos
Poluentes Atmosféricos , Nefropatias , Animais , Bactérias/metabolismo , Biomarcadores , Pressão Sanguínea , Creatinina , Flavinas , Rim/metabolismo , Masculino , Metilaminas/urina , Oxigenases de Função Mista , Proteinúria , Ratos , Água
3.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682739

RESUMO

Evidence suggests that microbiota-derived metabolites, including short-chain fatty acids (SCFAs) and trimethylamine-oxide (TMAO), affect the course of diabetic multiorgan pathology. We hypothesized that diabetes activates the intestinal renin-angiotensin system (RAS), contributing to gut pathology. Twelve-week-old male rats were divided into three groups: controls, diabetic (streptozotocin-induced) and diabetic treated with enalapril. Histological examination and RT-qPCR were performed to evaluate morphology and RAS expression in the jejunum and the colon. SCFA and TMAO concentrations in stools, portal and systemic blood were evaluated. In comparison to the controls, the diabetic rats showed hyperplastic changes in jejunal and colonic mucosa, increased plasma SCFA, and slightly increased plasma TMAO. The size of the changes was smaller in enalapril-treated rats. Diabetic rats had a lower expression of Mas receptor (MasR) and angiotensinogen in the jejunum whereas, in the colon, the expression of MasR and renin was greater in diabetic rats. Enalapril-treated rats had a lower expression of MasR in the colon. The expression of AT1a, AT1b, and AT2 receptors was similar between groups. In conclusion, diabetes produces morphological changes in the intestines, increases plasma SCFA, and alters the expression of renin and MasR. These alterations were reduced in enalapril-treated rats. Future studies need to evaluate the clinical significance of intestinal pathology in diabetes.


Assuntos
Diabetes Mellitus Experimental , Sistema Renina-Angiotensina , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Enalapril/metabolismo , Enalapril/farmacologia , Masculino , Ratos , Renina/metabolismo , Estreptozocina
4.
Bioorg Chem ; 108: 104650, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33486369

RESUMO

Hydrogen sulfide (H2S) is a gaseous molecule that exhibits various biological effects. For example, H2S has been recognized as a blood pressure-lowering agent. Presented in this report is a new modifiable platform for H2S supply, its preparation and H2S release kinetics from a series of structurally diversified thionolactones. Furthermore, the properties of the obtained H2S donors were evaluated in both in vitro and in vivo studies. The kinetic parameters of H2S release were determined and compared with NaHS and pyrrolidine-2-thione, a thiolactame analog, using a fluorescence detection method based on 7-azido-4-methyl-2H-chromen-2-one probe. We have shown that H2S release rates from the developed compounds are controllable through structural modifications. This study shows that both the thiono-lactone ring's size and the presence of a methyl group in the thiono-lactone ring significantly influenced the rate of H2S release. Finally, we have found a significant hypotensive response to intravenous administration of the developed donors in anesthetized rats.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Lactonas/farmacologia , Animais , Relação Dose-Resposta a Droga , Sulfeto de Hidrogênio/química , Injeções Intravenosas , Cinética , Lactonas/administração & dosagem , Lactonas/química , Masculino , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
5.
Elife ; 92020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32510330

RESUMO

Trimethylamine-oxide (TMAO) is present in seafood which is considered to be beneficial for health. Deep-water animals accumulate TMAO to protect proteins, such as lactate dehydrogenase (LDH), against hydrostatic pressure stress (HPS). We hypothesized that TMAO exerts beneficial effects on the circulatory system and protects cardiac LDH exposed to HPS produced by the contracting heart. Male, Sprague-Dawley and Spontaneously-Hypertensive-Heart-Failure (SHHF) rats were treated orally with either water (control) or TMAO. In vitro, LDH with or without TMAO was exposed to HPS and was evaluated using fluorescence correlation spectroscopy. TMAO-treated rats showed higher diuresis and natriuresis, lower arterial pressure and plasma NT-proBNP. Survival in SHHF-control was 66% vs 100% in SHHF-TMAO. In vitro, exposure of LDH to HPS with or without TMAO did not affect protein structure. In conclusion, TMAO reduced mortality in SHHF, which was associated with diuretic, natriuretic and hypotensive effects. HPS and TMAO did not affect LDH protein structure.


Heart failure is a common cause of death in industrialized countries with aging populations. Japan, however, has lower rates of heart failure and fewer deaths linked to this disease than the United States or Europe, despite having the highest proportion of elderly people in the world. Dietary differences between these regions may explain the lower rate of heart failure in Japan. The Japanese diet is rich in seafood, which contains nutrients that promote heart health, such as omega-3 fatty acids. Seafood also contains other compounds, including trimethylamine oxide (TMAO). Fish that live in deep waters undergo high pressures, which can damage their proteins, but TMAO seems to protect the proteins from harm. In humans, eating seafood increases TMAO levels in the blood and urine, but it is unclear what effects this has on heart health. Increased levels of TMAO in the blood are associated with cardiovascular diseases, but scientists are not sure whether TMAO itself harms the heart. A toxic byproduct of gut bacteria called TMA is converted in TMAO in the body, so it is possible that TMA rather than TMAO is to blame. To assess the effects of dietary TMAO on heart failure, Gawrys-Kopczynska et al. fed the compound to healthy rats and rats with heart failure for one year. TMAO had no effects on the healthy rats. Of the rats with heart failure that were fed TMAO, all of them survived the year, while one third of rats with heart failure that were not fed TMAO died. TMAO-treated rats with heart failure had lower blood pressure and urinated more than untreated rats with the condition. The experiments suggest that dietary TMAO may mimic the effects of heart failure treatments, which remove excess water and salt and lower pressure on the heart. More studies are needed to confirm whether TMAO has this same effect on humans.


Assuntos
Diurese/efeitos dos fármacos , Insuficiência Cardíaca/tratamento farmacológico , Metilaminas/química , Metilaminas/farmacologia , Alimentos Marinhos/análise , Angiotensinas/genética , Angiotensinas/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Rim/efeitos dos fármacos , Masculino , Metilaminas/administração & dosagem , Técnicas Analíticas Microfluídicas , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/genética , Receptor Tipo 2 de Angiotensina/metabolismo , Temperatura
6.
Eur J Pharmacol ; 877: 173086, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32234527

RESUMO

Valeric acid (VA) is a short-chain fatty acid produced by microbiota and herbs such as Valeriana officinalis. Moreover, VA is released from medicines such as estradiol valerate by esterases. We evaluated the concentrations of endogenous VA in male, 14-week-old rats in the liver, heart, brain, kidneys, lungs, blood and in the colon, a major site of microbiota metabolism, using liquid chromatography coupled with mass spectrometry. In addition, the tissue distribution of VA D9-isotope (VA-D9) administered into the colon was assessed. Finally, we investigated the effect of exogenous VA on arterial blood pressure (BP) and heart rate (HR) in anesthetized rats, and the reactivity of mesenteric (MA) and gracilis muscle (GMA) arteries ex vivo. Physiological concentration of VA in the colon content was ≈650 µM, ≈ 0.1-1 µM in the investigated tissues, and ≈0.4 µM in systemic blood. VA-D9 was detected in the tissues 5 min after the administration into the colon. The vehicle did not affect BP and HR. VA produced a dose-dependent decrease in BP, and at higher doses lowered HR. The hypotensive effect of VA was inhibited by 3-hydroxybutyrate, an antagonist of GPR41/43-receptors but not by the subphrenic vagotomy. Hexamethonium prolonged the hypotensive effect of VA while atropine did not influence the hypotensive effect. VA dilated GMA and MA. In conclusion, the exogenous VA produces vasodilation and lowers BP. The colon-derived VA rapidly penetrates to tissues involved in the control of BP. Further studies are needed to evaluate the effects of endogenous and exogenous VA on the circulatory system.


Assuntos
Pressão Arterial/efeitos dos fármacos , Ácidos Pentanoicos/farmacologia , Animais , Colo/efeitos dos fármacos , Colo/fisiologia , Ácidos Pentanoicos/urina , Ratos
7.
Pflugers Arch ; 471(11-12): 1441-1453, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31728701

RESUMO

Butyric acid (BA) is a short-chain fatty acid (SCFA) produced by gut bacteria in the colon. We hypothesized that colon-derived BA may affect hemodynamics. Arterial blood pressure (BP) and heart rate (HR) were recorded in anesthetized, male, 14-week-old Wistar rats. A vehicle, BA, or 3-hydroxybutyrate, an antagonist of SCFA receptors GPR41/43 (ANT) were administered intravenously (IV) or into the colon (IC). Reactivity of mesenteric (MA) and gracilis muscle (GMA) arteries was tested ex vivo. The concentration of BA in stools, urine, portal, and systemic blood was measured with liquid chromatography coupled with mass spectrometry. BA administered IV decreased BP with no significant effect on HR. The ANT reduced, whereas L-NAME, a nitric oxide synthase inhibitor, did not affect the hypotensive effect of BA. In comparison to BA administered intravenously, BA administered into the colon produced a significantly longer decrease in BP and a decrease in HR, which was associated with a 2-3-fold increase in BA colon content. Subphrenic vagotomy and IC pretreatment with the ANT significantly reduced the hypotensive effect. Ex vivo, BA dilated MA and GMA. In conclusion, an increase in the concentration of BA in the colon produces a significant hypotensive effect which depends on the afferent colonic vagus nerve signaling and GPR41/43 receptors. BA seems to be one of mediators between gut microbiota and the circulatory system.


Assuntos
Pressão Arterial/efeitos dos fármacos , Ácido Butírico/farmacologia , Colo/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Nervo Vago/efeitos dos fármacos , Animais , Artérias/efeitos dos fármacos , Artérias/metabolismo , Colo/metabolismo , Ácidos Graxos Voláteis/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Hipotensão/tratamento farmacológico , Hipotensão/metabolismo , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Nervo Vago/metabolismo
9.
Bioorg Chem ; 88: 102941, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31039470

RESUMO

Hydrogen sulfide (H2S) is a biologically important gaseous molecule that exhibits promising protective effects against a variety of pathological processes. For example, it was recognized as a blood pressure lowering agent. Aligned with the need for easily modifiable platforms for the H2S supply, we report here the preparation and the H2S release kinetics from a series of structurally diversified thioamides, thiolactams and thioureas. Three different thionation methods based on the usage of a phosphorus pentasulfide and Lawesson reagent were applied to prepare the target thioamides and thiolactams. Furthermore, obtained H2S donors were evaluated both in in vivo and in vitro studies. The kinetic parameters of the liberating H2S was determined and compared with NaHS and GYY4137 using two different detection technics i.e.; fluorescence labeling 7-azido-4-methyl-2H-chromen-2-one and 5,5'-dithiobis (2-nitrobenzoic acid), sulfhydryl probe, also known as the Ellman's reagent. We have proved that the amount of releasing H2S from these compounds is controllable through structural modifications. Finally, the present study shows a hypotensive response to an intravenous administration of the developed donors in the anesthetized rats.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Sulfeto de Hidrogênio/análise , Lactamas/farmacologia , Tioamidas/farmacologia , Tioureia/farmacologia , Administração Intravenosa , Animais , Cinética , Lactamas/administração & dosagem , Lactamas/química , Masculino , Ratos , Ratos Sprague-Dawley , Tioamidas/administração & dosagem , Tioamidas/química , Tioureia/administração & dosagem , Tioureia/química
10.
Nutrients ; 11(3)2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30862081

RESUMO

Recent evidence suggests that tryptophan, an essential amino acid, may exert biological effects by means of tryptophan-derived gut bacteria products. We evaluated the potential contribution of tryptophan-derived bacterial metabolites to body weight gain. The study comprised three experimental series performed on separate groups of male, Sprague-Dawley rats: (i) rats on standard laboratory diet treated with water solution of neomycin, an antibiotic, or tap water (controls-1); (ii) rats on standard diet (controls-2) or tryptophan-high (TH) or tryptophan-free (TF) diet; and (iii) rats treated with indole-3-propionic acid (I3P), a bacterial metabolite of tryptophan, or a vehicle (controls-3). (i) Rats treated with neomycin showed a significantly higher weight gain but lower stool and blood concentration of I3P than controls-1. (ii) The TH group showed significantly smaller increases in body weight but higher stool and plasma concentration of I3P than controls-2. In contrast, the TF group showed a decrease in body weight, decreased total serum protein and a significant increase in urine output. (iii) Rats treated with I3P showed significantly smaller weight gain than controls-3. Our study suggests that I3P, a gut bacteria metabolite of tryptophan, contributes to changes in body weight gain produced by antibiotics and tryptophan-rich diet.


Assuntos
Indóis/farmacologia , Neomicina/farmacologia , Propionatos/farmacologia , Triptofano/metabolismo , Animais , Indóis/metabolismo , Masculino , Propionatos/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Ratos , Ratos Sprague-Dawley , Aumento de Peso
11.
Acta Biochim Pol ; 66(4): 611-618, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31893496

RESUMO

Acute pancreatitis (AP) is a disease defined as acute or chronic inflammatory process of the pancreas characterized by premature activation of digestive enzymes within the pancreatic acinar cells and causing pancreatic auto-digestion. In mammalian tissues, H2S is synthesized endogenously from L-cysteine in regulated enzymatic pathways catalyzed by pyridoxal phosphate-dependent enzymes: cystathionine beta - synthase (CBS), gamma - cystathionase (CTH) and cysteine aminotransferase (CAT) coupled with 3-mercaptopyruvate sulfurtransferase (MPST). In the mitochondria, hydrogen sulfide is oxidized to sulfite, which is then converted to thiosulfate (sulfane sulfur-containing compound) by thiosulfate sulfurtransferase (rhodanese; TST). The activity and the expression of CBS, CTH, MPST, and TST have been determined in vivo in pancreas of control rats, rats with acute pancreatitis and sham group. Levels of low-molecular sulfur compounds such as reduced and oxidized glutathione, cysteine, cystine and cystathionine were also determined. The study showed the significant role of MPST in H2S metabolism in pancreas. Stress caused by the surgery (sham group) and AP cause a decrease in H2S production associated with a decrease of MPST activity and expression. Markedly higher level of cysteine in the AP pancreas may be caused by a reduced rate of cysteine consumption in reaction catalyzed by MPST but it can also be a sign of the processes of proteolysis occurring in the changed tissue.


Assuntos
Ductos Biliares Extra-Hepáticos/metabolismo , Sulfeto de Hidrogênio/metabolismo , Pâncreas/metabolismo , Ductos Pancreáticos/metabolismo , Pancreatite/metabolismo , Sulfurtransferases/metabolismo , Animais , Ductos Biliares Extra-Hepáticos/cirurgia , Cistationina/metabolismo , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Cisteína/metabolismo , Cistina/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Glutationa/metabolismo , Ligadura , Masculino , Mitocôndrias/metabolismo , Pâncreas/patologia , Ductos Pancreáticos/cirurgia , Pancreatite/genética , Pancreatite/patologia , Ratos , Ratos Endogâmicos WKY , Sulfurtransferases/genética , Tiossulfato Sulfurtransferase/genética , Tiossulfato Sulfurtransferase/metabolismo , Transaminases/genética , Transaminases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA