Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39208421

RESUMO

BACKGROUND: Fatigability in community-dwelling older adults is highly prevalent and disabling, but lacks a treatment. Greater nigrostriatal dopaminergic signaling can ameliorate performance fatigability in healthy young adults, but its role in community-dwelling older adults is not known. We hypothesized that higher nigrostriatal dopaminergic integrity would be associated with lower performance fatigability, independent of cardiopulmonary and musculoskeletal energetics and other health conditions. METHODS: In 125 older adults participating in the Study of Muscle, Mobility and Aging, performance fatigability was measured as performance deterioration during a fast 400 meter walk (% slowing down from the 2nd to the 9th lap). Nigrostriatal DA integrity was measured using (+)-[11C] dihydrotetrabenazine (DTBZ) PET imaging. The binding signal was obtained separately for the subregions regulating sensorimotor (posterior putamen), reward (ventral striatum) and executive control processes (dorsal striatum). Multivariable linear regression models of performance fatigability (dependent variable) estimated the coefficients of dopamine integrity in striatal subregions, adjusted for demographics, comorbidities, and cognition. Models were further adjusted for skeletal muscle energetics (via biopsy) and cardiopulmonary fitness (via cardiopulmonary exercise testing). RESULTS: Higher [11C]-DTBZ binding in the posterior putamen was significantly associated with lower performance fatigability (demographic-adjusted standardized Beta = -1.08, 95% CI: -1.96, -0.20); results remained independent of adjustment for other covariates, including cardiopulmonary and musculoskeletal energetics. Associations with other striatal subregions were not significant. DISCUSSION: Dopaminergic integrity in the sensorimotor striatum may influence performance fatigability in older adults without clinically overt diseases, independent of other aging systems.

2.
medRxiv ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38853946

RESUMO

Greater perceived physical fatigability and lower skeletal muscle energetics are predictors of mobility decline. Characterizing associations between muscle energetics and perceived fatigability may provide insight into potential targets to prevent mobility decline. We examined associations of in vivo (maximal ATP production, ATPmax) and ex vivo (maximal carbohydrate supported oxidative phosphorylation [max OXPHOS] and maximal fatty acid supported OXPHOS [max FAO OXPHOS]) measures of mitochondrial energetics with two measures of perceived physical fatigability, Pittsburgh Fatigability Scale (PFS, 0-50, higher=greater) and Rating of Perceived Exertion (RPE Fatigability, 6-20, higher=greater) after a slow treadmill walk. Participants from the Study of Muscle, Mobility and Aging (N=873) were 76.3±5.0 years old, 59.2% women, and 85.3% White. Higher muscle energetics (both in vivo and ex vivo ) were associated with lower perceived physical fatigability, all p<0.03. When stratified by sex, higher ATPmax was associated with lower PFS Physical for men only; higher max OXPHOS and max FAO OXPHOS were associated with lower RPE fatigability for both sexes. Higher skeletal muscle energetics were associated with 40-55% lower odds of being in the most (PFS≥25, RPE Fatigability≥12) vs least (PFS 0-4, RPE Fatigability 6-7) severe fatigability strata, all p<0.03. Being a woman was associated with 2-3 times higher odds of being in the most severe fatigability strata when controlling for ATPmax but not the in vivo measures (p<0.05). Better mitochondrial energetics were linked to lower fatigability and less severe fatigability in older adults. Findings imply that improving skeletal muscle energetics may mitigate perceived physical fatigability and prolong healthy aging.

3.
J Clin Med ; 12(10)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37240564

RESUMO

Fatigue, a common symptom, together with the characteristic of performance fatigability, are well-documented features of SMA that impact quality of life and function. Importantly, establishing associations between multidimensional self-reported fatigue scales and patient performance has proven difficult. This review was conducted to evaluate the various patient-reported fatigue scales applied in SMA, with the objective of considering the limitations and advantages of each measure. Variable use of fatigue-related nomenclature, including conflicting terminology interpretation, has affected assessment of physical fatigue attributes, specifically perceived fatigability. This review encourages the development of original patient-reported scales to enable perceived fatigability assessment, providing a potential complementary method of evaluating treatment response.

4.
Exp Gerontol ; 170: 111988, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36302456

RESUMO

BACKGROUND: Leukocyte telomere length (LTL) is a potential genomic marker of biological aging, but its relation to fatigability, a prognostic indicator of phenotypic aging (e.g., functional decline) is unknown. We hypothesized shorter LTL would predict greater perceived physical fatigability, but that this association would be attenuated by adjusting for chronological age. METHODS: Two generations of participants (N = 1997; 309 probands, 1688 offspring) were from the Long Life Family Study (age = 73.7 ± 10.4, range 60-108, 54.4 % women), a longitudinal cohort study of aging. LTL was assayed at baseline. Perceived physical fatigability was measured 8.0 ± 1.1 years later using the validated, self-administered 10-item Pittsburgh Fatigability Scale (PFS, 0-50, higher scores = greater fatigability). Generalized estimating equations were generated to model the association between LTL and PFS Physical scores. RESULTS: Prevalence of greater physical fatigability (PFS scores≥15) was 41.9 %. Using generalized estimating equations, a one kilobase pair shorter LTL was associated with higher PFS Physical scores (ß = 1.8, p < .0001), accounting for family structure, and adjusting for field center, follow-up time, sex, and follow-up body mass index, physical activity, and chronic health conditions. When age was included as a covariate, the association was fully attenuated (ß = 0.1, p = .78). CONCLUSION: LTL may provide an alternative method for estimating an individual's lifetime exposure to chronic stressors, but does not appear to provide additional information not captured by chronological age. Further research is needed to characterize the interaction between age, LTL, and perceived fatigability, and develop a method of identifying individuals at risk for deleterious aging.


Assuntos
Leucócitos , Telômero , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Masculino , Estudos Longitudinais , Telômero/genética , Fadiga/genética , Envelhecimento/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA