Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 298(Pt B): 100-10, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26529469

RESUMO

Recent reports support a key role of tuberal hypothalamic neurons secreting melanin concentrating-hormone (MCH) in the promotion of Paradoxical Sleep (PS). Controversies remain concerning their concomitant involvement in Slow-Wave Sleep (SWS). We studied the effects of their selective loss achieved by an Ataxin 3-mediated ablation strategy to decipher the contribution of MCH neurons to SWS and/or PS. Polysomnographic recordings were performed on male adult transgenic mice expressing Ataxin-3 transgene within MCH neurons (MCH(Atax)) and their wild-type littermates (MCH(WT)) bred on two genetic backgrounds (FVB/N and C57BL/6). Compared to MCH(WT) mice, MCH(Atax) mice were characterized by a significant drop in MCH mRNAs (-70%), a partial loss of MCH-immunoreactive neurons (-30%) and a marked reduction in brain density of MCH-immunoreactive fibers. Under basal condition, such MCH(Atax) mice exhibited higher PS amounts during the light period and a pronounced SWS fragmentation without any modification of SWS quantities. Moreover, SWS and PS rebounds following 4-h total sleep deprivation were quantitatively similar in MCH(Atax)vs. MCH(WT) mice. Additionally, MCH(Atax) mice were unable to consolidate SWS and increase slow-wave activity (SWA) in response to this homeostatic challenge as observed in MCH(WT) littermates. Here, we show that the partial loss of MCH neurons is sufficient to disturb the fine-tuning of sleep. Our data provided new insights into their contribution to subtle process managing SWS quality and its efficiency rather than SWS quantities, as evidenced by the deleterious impact on two powerful markers of sleep depth, i.e., SWS consolidation/fragmentation and SWA intensity under basal condition and under high sleep pressure.


Assuntos
Encéfalo/fisiopatologia , Homeostase/fisiologia , Hormônios Hipotalâmicos/metabolismo , Melaninas/metabolismo , Neurônios/fisiologia , Hormônios Hipofisários/metabolismo , Sono/fisiologia , Animais , Encéfalo/patologia , Contagem de Células , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/patologia , Polissonografia , Especificidade da Espécie
2.
Sci Adv ; 1(3): e1400177, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26601158

RESUMO

Evidence in humans suggests that limbic cortices are more active during rapid eye movement (REM or paradoxical) sleep than during waking, a phenomenon fitting with the presence of vivid dreaming during this state. In that context, it seemed essential to determine which populations of cortical neurons are activated during REM sleep. Our aim in the present study is to fill this gap by combining gene expression analysis, functional neuroanatomy, and neurochemical lesions in rats. We find in rats that, during REM sleep hypersomnia compared to control and REM sleep deprivation, the dentate gyrus, claustrum, cortical amygdaloid nucleus, and medial entorhinal and retrosplenial cortices are the only cortical structures containing neurons with an increased expression of Bdnf, FOS, and ARC, known markers of activation and/or synaptic plasticity. Further, the dentate gyrus is the only cortical structure containing more FOS-labeled neurons during REM sleep hypersomnia than during waking. Combining FOS staining, retrograde labeling, and neurochemical lesion, we then provide evidence that FOS overexpression occurring in the cortex during REM sleep hypersomnia is due to projections from the supramammillary nucleus and the claustrum. Our results strongly suggest that only a subset of cortical and hippocampal neurons are activated and display plasticity during REM sleep by means of ascending projections from the claustrum and the supramammillary nucleus. Our results pave the way for future studies to identify the function of REM sleep with regard to dreaming and emotional memory processing.

3.
Sleep ; 38(10): 1537-46, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26085297

RESUMO

STUDY OBJECTIVES: Obstructive sleep apnea (OSA) induces cognitive impairment that involves intermittent hypoxia (IH). Because OSA is recognized as a low-grade systemic inflammatory disease and only some patients develop cognitive deficits, we investigated whether IH-related brain consequences shared similar pathophysiology and required additional factors such as systemic inflammation to develop. DESIGN: Nine-week-old male C57BL/6J mice were exposed to 1 day, 6 or 24 w of IH (alternating 21-5% FiO2 every 30 sec, 8 h/day) or normoxia. Microglial changes were assessed in the functionally distinct dorsal (dH) and ventral (vH) regions of the hippocampus using Iba1 immunolabeling. Then the study concerned dH, as vH only tended to be lately affected. Seven proinflammatory and anti-inflammatory cytokine messenger RNA (mRNA) were assessed at all time points using semiquantitative real-time reverse transcription polymerase chain reaction (RT-PCR). Similar mRNA analysis was performed after 6 w IH or normoxia associated for the past 3 w with repeated intraperitoneal low-dose lipopolysaccharide or saline. MEASUREMENTS AND RESULTS: Chronic (6, 24 w) but not acute IH induced significant microglial changes in dH only, including increased density and morphological features of microglia priming. In dH, acute but not chronic IH increased IL-1ß and RANTES/CCL5 mRNA, whereas the other cytokines remained unchanged. In contrast, chronic IH plus lipopolysaccharide increased interleukin (IL)-6 and IL10 mRNA whereas lipopolysaccharide alone did not affect these cytokines. CONCLUSION: The obstructive sleep apnea component intermittent hypoxia (IH) causes low-grade neuroinflammation in the dorsal hippocampus of mice, including early but transient cytokine elevations, delayed but long-term microglial changes, and cytokine response alterations to lipopolysaccharide inflammatory challenge. These changes may contribute to IH-induced cognitive impairment and pathological brain aging.


Assuntos
Hipocampo/patologia , Hipóxia/complicações , Hipóxia/metabolismo , Inflamação/complicações , Inflamação/patologia , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/metabolismo , Animais , Quimiocina CCL5/genética , Doença Crônica , Transtornos Cognitivos/complicações , Transtornos Cognitivos/genética , Transtornos Cognitivos/fisiopatologia , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Hipóxia/genética , Hipóxia/patologia , Inflamação/genética , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Interleucinas/genética , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , RNA Mensageiro/análise , RNA Mensageiro/genética , Apneia Obstrutiva do Sono/genética , Apneia Obstrutiva do Sono/patologia , Fatores de Tempo
4.
J Sleep Res ; 24(3): 309-19, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25524602

RESUMO

Studying paradoxical sleep homeostasis requires the specific and efficient deprivation of paradoxical sleep and the evaluation of the subsequent recovery period. With this aim, the small-platforms-over-water technique has been used extensively in rats, but only rare studies were conducted in mice, with no sleep data reported during deprivation. Mice are used increasingly with the emergence of transgenic mice and technologies such as optogenetics, raising the need for a reliable method to manipulate paradoxical sleep. To fulfil this need, we refined this deprivation method and analysed vigilance states thoroughly during the entire protocol. We also studied activation of hypocretin/orexin and melanin-concentrating hormone neurones using Fos immunohistochemistry to verify whether mechanisms regulating paradoxical sleep in mice are similar to those in rats. We showed that 48 h of deprivation was highly efficient, with a residual amount of paradoxical sleep of only 2.2%. Slow wave sleep and wake quantities were similar to baseline, except during the first 4 h of deprivation, where slow wave sleep was strongly reduced. After deprivation, we observed a 124% increase in paradoxical sleep quantities during the first hour of rebound. In addition, 34% of hypocretin/orexin neurones were activated during deprivation, whereas melanin-concentrated hormone neurones were activated only during paradoxical sleep rebound. Corticosterone level showed a twofold increase after deprivation and returned to baseline level after 4 h of recovery. In summary, a fairly selective deprivation and a significant rebound of paradoxical sleep can be obtained in mice using the small-platforms-over-water method. As in rats, rebound is accompanied by a selective activation of melanin-concentrating hormone neurones.


Assuntos
Hormônios Hipotalâmicos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Melaninas/metabolismo , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Hormônios Hipofisários/metabolismo , Privação do Sono/fisiopatologia , Sono REM/fisiologia , Água , Animais , Atenção/fisiologia , Corticosterona/metabolismo , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Orexinas , Polissonografia , Ratos , Sono/fisiologia , Fatores de Tempo , Vigília/fisiologia
5.
Sleep ; 32(2): 227-40, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19238810

RESUMO

STUDY OBJECTIVES: It has been shown that wake (W) and slow wave sleep (SWS) modulate synaptic transmission in neocortical projections. However the impact of paradoxical sleep (PS) quantities on synaptic transmission remains unknown. We examined whether PS modulated the excitatory transmission and expression of glutamate receptor subtypes and phosphorylated extracellular signal-regulated kinases (p-ERK1/2). DESIGN: PS deprivation (PSD) was carried out with the multiple platforms method on adult male Sprague-Dawley rats. LTP, late-LTP, and synaptic transmission were studied in the dorsal and ventral hippocampus of controls, 75-h PSD and 150-min PS rebound (PSR). GluR1 and NR1 protein and mRNA expression were evaluated by western blot and real-time PCR. p-ERK1/2 level was quantified by western blot and immunohistochemistry. MEASUREMENT AND RESULTS: PSD decreased synaptic transmission and LTP selectively in dorsal CA1 and PSR rescued these deficits. PSD-induced synaptic modifications in CA1 were associated with a decrease in GluR1, NR1, and p-ERK1/2 levels in dorsal CA1 without change in GluR1 and NR1 mRNA expression. Regression analysis shows that LTP is positively correlated with both PS quantities and SWS episodes duration, whereas synaptic transmission and late-LTP are positively correlated with PS quantities and negatively correlated with SWS quantities. CONCLUSIONS: These findings unveil previously unrecognized roles of PSD on synaptic transmission and LTP in the dorsal, but not in the ventral, hippocampus. The fact that the decrease in protein expression of GluR1 and NR1 was not associated with a change in mRNA expression of these receptors suggests that a sleep-induced modulation of translational mechanisms occurs in dorsal CA1.


Assuntos
Hipocampo/patologia , Potenciação de Longa Duração/genética , Receptores de AMPA/genética , Receptores de N-Metil-D-Aspartato/genética , Privação do Sono/genética , Transmissão Sináptica/genética , Animais , Ativação Enzimática/genética , Hipocampo/fisiopatologia , Potenciação de Longa Duração/fisiologia , Masculino , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Privação do Sono/patologia , Privação do Sono/fisiopatologia , Sono REM/genética , Sono REM/fisiologia , Transmissão Sináptica/fisiologia
6.
BMC Genomics ; 9: 418, 2008 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-18796152

RESUMO

BACKGROUND: "Open" transcriptome analysis methods allow to study gene expression without a priori knowledge of the transcript sequences. As of now, SAGE (Serial Analysis of Gene Expression), LongSAGE and MPSS (Massively Parallel Signature Sequencing) are the mostly used methods for "open" transcriptome analysis. Both LongSAGE and MPSS rely on the isolation of 21 pb tag sequences from each transcript. In contrast to LongSAGE, the high throughput sequencing method used in MPSS enables the rapid sequencing of very large libraries containing several millions of tags, allowing deep transcriptome analysis. However, a bias in the complexity of the transcriptome representation obtained by MPSS was recently uncovered. RESULTS: In order to make a deep analysis of mouse hypothalamus transcriptome avoiding the limitation introduced by MPSS, we combined LongSAGE with the Solexa sequencing technology and obtained a library of more than 11 millions of tags. We then compared it to a LongSAGE library of mouse hypothalamus sequenced with the Sanger method. CONCLUSION: We found that Solexa sequencing technology combined with LongSAGE is perfectly suited for deep transcriptome analysis. In contrast to MPSS, it gives a complex representation of transcriptome as reliable as a LongSAGE library sequenced by the Sanger method.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência de DNA/métodos , Animais , Biblioteca Gênica , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos
7.
Neurosci Lett ; 323(2): 146-50, 2002 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-11950514

RESUMO

Interactions are known to occur in the brain between serotonin (5-HT) and substance P (SP). To investigate whether SP can directly influence serotonergic neurons, double immunohistochemical labelings were performed on rat brain sections with NK1 or NK3 affinity-purified antibodies and a 5-HT monoclonal antibody. It was found that the vast majority of serotonergic cell bodies do not colocalize NK1 or NK3 labeling. Only in the central linear nucleus and ventral part of the dorsal raphe nucleus were a few serotonergic neurons double-labeled for NK1 receptors (15 and 0.8% of serotonergic neurons, respectively). It is suggested that serotonergic neurons are not major direct targets for SP in the rat brain.


Assuntos
Neurônios/química , Núcleos da Rafe/química , Receptores da Neurocinina-1/análise , Receptores da Neurocinina-3/análise , Serotonina/fisiologia , Animais , Masculino , Ratos , Serotonina/análise , Substância P/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA