Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 10: e12971, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35282273

RESUMO

Background: Marine protected areas (MPAs) usually have both positive effects of protection for the fisheries' target species and indirect negative effects for sea urchins. Moreover, often in MPAs sea urchin human harvest is restricted, but allowed. This study is aimed at estimating the effect of human harvest of the sea urchin Paracentrotus lividus within MPAs, where fish exploitation is restricted and its density is already controlled by a higher natural predation risk. The prediction we formulated was that the lowest densities of commercial sea urchins would be found where human harvest is allowed and where the harvest is restricted, compared to where the harvest is forbidden. Methods: At this aim, a collaborative database gained across five MPAs in Sardinia (Western Mediterranean, Italy) and areas outside was gathered collecting sea urchin abundance and size data in a total of 106 sites at different degrees of sea urchin exploitation: no, restricted and unrestricted harvest sites (NH, RH and UH, respectively). Furthermore, as estimates made in past monitoring efforts (since 2005) were available for 75 of the sampled sites, for each of the different levels of exploitation, the rate of variation in the total sea urchin density was also estimated. Results: Results have highlighted that the lowest sea urchin total and commercial density was found in RH sites, likely for the cumulative effects of human harvest and natural predation. The overall rate of change in sea urchin density over time indicates that only NH conditions promoted the increase of sea urchin abundance and that current local management of the MPAs has driven towards an important regression of populations, by allowing the harvest. Overall, results suggest that complex mechanisms, including synergistic effects between natural biotic interactions and human pressures, may occur on sea urchin populations and the assessment of MPA effects on P. lividus populations would be crucial to guide management decisions on regulating harvest permits. Overall, the need to ban sea urchin harvest in the MPAs to avoid extreme reductions is encouraged, as inside the MPAs sea urchin populations are likely under natural predation pressures for the trophic upgrading.


Assuntos
Conservação dos Recursos Naturais , Paracentrotus , Animais , Humanos , Conservação dos Recursos Naturais/métodos , Paracentrotus/fisiologia , Peixes/fisiologia , Dinâmica Populacional , Itália
2.
Mar Pollut Bull ; 174: 113170, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34863074

RESUMO

Our study provides a first dataset on marine litter collected at five pocket beaches situated in the northern Sardinia (Italy). The monitoring method refers to the operational guidelines for rapid beach assessment of beach waste described by UNEP. We classified the 7975 items collected according to the eight categories and 99 types. Their analysis indicates that plastic is the most common litter category and, plastic fragments are the most frequent debris. The density ranges from 0.05 to 2.82 item/m2. The top 10 highly present marine litter reveals that land-based litter is the main source, probably due to the lack of waste management, massive tourism and recreational activities. In addition, landscape morphology affects the redistribution of marine litter. Overall, these first results are part of a wider study on the presence of marine litter in the pocket beaches of north Sardinia to provide coastal managers and policy makers mitigation strategies.


Assuntos
Praias , Resíduos , Monitoramento Ambiental , Itália , Plásticos , Resíduos/análise
3.
Life (Basel) ; 10(10)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066230

RESUMO

The fan mussel, Pinna nobilis, represents the largest bivalve endemic to the Mediterranean Sea. Since 2016, dramatic mass mortality of this species has been observed in several areas. The first surveys suggested that Haplosporidium pinnae (currently considered species-specific) was the main etiological agent, but recent studies have indicated that a multifactorial disease may be responsible for this phenomenon. In this study, we performed molecular diagnostic analyses on P. nobilis, P. rudis, and bivalve heterologous host species from the island of Sardinia to shed further light on the pathogens involved in the mass mortality. The results support the occurrence of a multifactorial disease and that Mycobacterium spp. and H. pinnae are not necessarily associated with the illness. Indeed, our analyses revealed that H. pinnae is not species-specific for P. nobilis, as it was present in other bivalves at least three years before the mass mortality began, and species of Mycobacterium were also found in healthy individuals of P. nobilis and P. rudis. We also detected the species Rhodococcus erythropolis, representing the first report in fan mussels of a bacterium other than Mycobacterium spp. and Vibrio spp. These results depict a complicated scenario, further demonstrating how the P. nobilis mass mortality event is far from being fully understood.

4.
Commun Biol ; 3(1): 175, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313088

RESUMO

Whereas most work to understand impacts of humans on biodiversity on coastal areas has focused on large, conspicuous organisms, we highlight effects of tourist access on the diversity of microscopic marine animals (meiofauna). We used a DNA metabarcoding approach with an iterative and phylogeny-based approach for the taxonomic assignment of meiofauna and relate diversity patterns to the numbers of tourists accessing sandy beaches on an otherwise un-impacted island National Park. Tourist frequentation, independently of differences in sediment granulometry, beach length, and other potential confounding factors, affected meiofaunal diversity in the shallow "swash" zone right at the mean water mark; the impacts declined with water depth (up to 2 m). The indicated negative effect on meiofauna may have a consequence on all the biota including the higher trophic levels. Thus, we claim that it is important to consider restricting access to beaches in touristic areas, in order to preserve biodiversity.


Assuntos
Praias , Biodiversidade , Conservação dos Recursos Naturais , Areia , Turismo , Água , Código de Barras de DNA Taxonômico , Monitoramento Ambiental , Humanos , Filogenia , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA