Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 23: 100825, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37928252

RESUMO

Thanks to its intrinsic properties, two-dimensional (2D) bismuth (bismuthene) can serve as a multimodal nanotherapeutic agent for lung cancer acting through multiple mechanisms, including photothermal therapy (PTT), magnetic field-induced hyperthermia (MH), immunogenic cell death (ICD), and ferroptosis. To investigate this possibility, we synthesized bismuthene from the exfoliation of 3D layered bismuth, prepared through a facile method that we developed involving surfactant-assisted chemical reduction, with a specific focus on improving its magnetic properties. The bismuthene nanosheets showed high in vitro and in vivo anti-cancer activity after simultaneous light and magnetic field exposure in lung adenocarcinoma cells. Only when light and magnetic field are applied together, we can achieve the highest anti-cancer activity compared to the single treatment groups. We have further shown that ICD-dependent mechanisms were involved during this combinatorial treatment strategy. Beyond ICD, bismuthene-based PTT and MH also resulted in an increase in ferroptosis mechanisms both in vitro and in vivo, in addition to apoptotic pathways. Finally, hemolysis in human whole blood and a wide variety of assays in human peripheral blood mononuclear cells indicated that the bismuthene nanosheets were biocompatible and did not alter immune function. These results showed that bismuthene has the potential to serve as a biocompatible platform that can arm multiple therapeutic approaches against lung cancer.

2.
ACS Nano ; 17(17): 17451-17467, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37643371

RESUMO

Nanoparticles (NPs) elicit sterile inflammation, but the underlying signaling pathways are poorly understood. Here, we report that human monocytes are particularly vulnerable to amorphous silica NPs, as evidenced by single-cell-based analysis of peripheral blood mononuclear cells using cytometry by time-of-flight (CyToF), while silane modification of the NPs mitigated their toxicity. Using human THP-1 cells as a model, we observed cellular internalization of silica NPs by nanoscale secondary ion mass spectrometry (nanoSIMS) and this was confirmed by transmission electron microscopy. Lipid droplet accumulation was also noted in the exposed cells. Furthermore, time-of-flight secondary ion mass spectrometry (ToF-SIMS) revealed specific changes in plasma membrane lipids, including phosphatidylcholine (PC) in silica NP-exposed cells, and subsequent studies suggested that lysophosphatidylcholine (LPC) acts as a cell autonomous signal for inflammasome activation in the absence of priming with a microbial ligand. Moreover, we found that silica NPs elicited NLRP3 inflammasome activation in monocytes, whereas cell death transpired through a non-apoptotic, lipid peroxidation-dependent mechanism. Together, these data further our understanding of the mechanism of sterile inflammation.


Assuntos
Inflamassomos , Nanopartículas , Humanos , Leucócitos Mononucleares , Espectrometria de Massa de Íon Secundário , Inflamação , Dióxido de Silício/farmacologia
3.
Small Methods ; 7(8): e2300197, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291737

RESUMO

Although vanadium-based metallodrugs are recently explored for their effective anti-inflammatory activity, they frequently cause undesired side effects. Among 2D nanomaterials, transition metal carbides (MXenes) have received substantial attention for their promise as biomedical platforms. It is hypothesized that vanadium immune properties can be extended to MXene compounds. Therefore, vanadium carbide MXene (V4 C3 ) is synthetized, evaluating its biocompatibility and intrinsic immunomodulatory effects. By combining multiple experimental approaches in vitro and ex vivo on human primary immune cells, MXene effects on hemolysis, apoptosis, necrosis, activation, and cytokine production are investigated. Furthermore, V4 C3 ability is demonstrated to inhibit T cell-dendritic cell interactions, evaluating the modulation of CD40-CD40 ligand interaction, two key costimulatory molecules for immune activation. The material biocompatibility at the single-cell level on 17 human immune cell subpopulations by single-cell mass cytometry is confirmed. Finally, the molecular mechanism underlying V4 C3 immune modulation is explored, demonstrating a MXene-mediated downregulation of antigen presentation-associated genes in primary human immune cells. The findings set the basis for further V4 C3 investigation and application as a negative modulator of the immune response in inflammatory and autoimmune diseases.


Assuntos
Linfócitos T , Vanádio , Humanos , Apresentação de Antígeno , Ligante de CD40 , Células Dendríticas
4.
Adv Mater ; 34(45): e2205154, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36207284

RESUMO

There is a critical unmet need to detect and image 2D materials within single cells and tissues while surveying a high degree of information from single cells. Here, a versatile multiplexed label-free single-cell detection strategy is proposed based on single-cell mass cytometry by time-of-flight (CyTOF) and ion-beam imaging by time-of-flight (MIBI-TOF). This strategy, "Label-free sINgle-cell tracKing of 2D matErials by mass cytometry and MIBI-TOF Design" (LINKED), enables nanomaterial detection and simultaneous measurement of multiple cell and tissue features. As a proof of concept, a set of 2D materials, transition metal carbides, nitrides, and carbonitrides (MXenes), is selected to ensure mass detection within the cytometry range while avoiding overlap with more than 70 currently available tags, each able to survey multiple biological parameters. First, their detection and quantification in 15 primary human immune cell subpopulations are demonstrated. Together with the detection, mass cytometry is used to capture several biological aspects of MXenes, such as their biocompatibility and cytokine production after their uptake. Through enzymatic labeling, MXenes' mediation of cell-cell interactions is simultaneously evaluated. In vivo biodistribution experiments using a mixture of MXenes in mice confirm the versatility of the detection strategy and reveal MXene accumulation in the liver, blood, spleen, lungs, and relative immune cell subtypes. Finally, MIBI-TOF is applied to detect MXenes in different organs revealing their spatial distribution. The label-free detection of 2D materials by mass cytometry at the single-cell level, on multiple cell subpopulations and in multiple organs simultaneously, will enable exciting new opportunities in biomedicine.


Assuntos
Nanoestruturas , Elementos de Transição , Humanos , Camundongos , Animais , Distribuição Tecidual
5.
Nano Today ; 38: 101136, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33753982

RESUMO

Two-dimensional transition metal carbides/carbonitrides known as MXenes are rapidly growing as multimodal nanoplatforms in biomedicine. Here, taking SARS-CoV-2 as a model, we explored the antiviral properties and immune-profile of a large panel of four highly stable and well-characterized MXenes - Ti3C2Tx, Ta4C3T x , Mo2Ti2C3T x and Nb4C3T x . To start with antiviral assessment, we first selected and deeply analyzed four different SARS-CoV-2 genotypes, common in most countries and carrying the wild type or mutated spike protein. When inhibition of the viral infection was tested in vitro with four viral clades, Ti3C2T x in particular, was able to significantly reduce infection only in SARS-CoV-2/clade GR infected Vero E6 cells. This difference in the antiviral activity, among the four viral particles tested, highlights the importance of considering the viral genotypes and mutations while testing antiviral activity of potential drugs and nanomaterials. Among the other MXenes tested, Mo2Ti2C3T x also showed antiviral properties. Proteomic, functional annotation analysis and comparison to the already published SARS-CoV-2 protein interaction map revealed that MXene-treatment exerts specific inhibitory mechanisms. Envisaging future antiviral MXene-based drug nano-formulations and considering the central importance of the immune response to viral infections, the immune impact of MXenes was evaluated on human primary immune cells by flow cytometry and single-cell mass cytometry on 17 distinct immune subpopulations. Moreover, 40 secreted cytokines were analyzed by Luminex technology. MXene immune profiling revealed i) the excellent bio and immune compatibility of the material, as well as the ability of MXene ii) to inhibit monocytes and iii) to reduce the release of pro-inflammatory cytokines, suggesting an anti-inflammatory effect elicited by MXene. We here report a selection of MXenes and viral SARS-CoV-2 genotypes/mutations, a series of the computational, structural and molecular data depicting deeply the SARS-CoV-2 mechanism of inhibition, as well as high dimensional single-cell immune-MXene profiling. Taken together, our results provide a compendium of knowledge for new developments of MXene-based multi-functioning nanosystems as antivirals and immune-modulators.

6.
Nanomaterials (Basel) ; 10(8)2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32824126

RESUMO

In the frame of graphene-based material (GBM) hazard characterization, particular attention should be given to the cutaneous effects. Hence, this study investigates if HaCaT skin keratinocytes exposed to high concentrations of few-layer graphene (FLG) or partially dehydrated graphene oxide (d-GO) for a short time can recover from the cytotoxic insult, measured by means of cell viability, mitochondrial damage and oxidative stress, after GBM removal from the cell medium. When compared to 24 or 72 h continuous exposure, recovery experiments suggest that the cytotoxicity induced by 24 h exposure to GBM is only partially recovered after 48 h culture in GBM-free medium. This partial recovery, higher for FLG as compared to GO, is not mediated by autophagy and could be the consequence of GBM internalization into cells. The ability of GBMs to be internalized inside keratinocytes together with the partial reversibility of the cellular damage is important in assessing the risk associated with skin exposure to GBM-containing devices.

7.
Theranostics ; 10(12): 5435-5488, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373222

RESUMO

Cancer represents one of the main causes of death in the world; hence the development of more specific approaches for its diagnosis and treatment is urgently needed in clinical practice. Here we aim at providing a comprehensive review on the use of 2-dimensional materials (2DMs) in cancer theranostics. In particular, we focus on graphene-related materials (GRMs), graphene hybrids, and graphdiyne (GDY), as well as other emerging 2DMs, such as MXene, tungsten disulfide (WS2), molybdenum disulfide (MoS2), hexagonal boron nitride (h-BN), black phosphorus (BP), silicene, antimonene (AM), germanene, biotite (black mica), metal organic frameworks (MOFs), and others. The results reported in the scientific literature in the last ten years (>200 papers) are dissected here with respect to the wide variety of combinations of imaging methodologies and therapeutic approaches, including drug/gene delivery, photothermal/photodynamic therapy, sonodynamic therapy, and immunotherapy. We provide a unique multidisciplinary approach in discussing the literature, which also includes a detailed section on the characterization methods used to analyze the material properties, highlighting the merits and limitations of the different approaches. The aim of this review is to show the strong potential of 2DMs for use as cancer theranostics, as well as to highlight issues that prevent the clinical translation of these materials. Overall, we hope to shed light on the hidden potential of the vast panorama of new and emerging 2DMs as clinical cancer theranostics.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Grafite/química , Neoplasias/terapia , Fotoquimioterapia/métodos , Nanomedicina Teranóstica/métodos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Propriedades de Superfície
8.
Artigo em Inglês | MEDLINE | ID: mdl-31709252

RESUMO

Cancer is one of the leading causes of death in the world. Therefore, the development of new advanced and targeted strategies in cancer research for early diagnosis and treatment has become essential to improve diagnosis outcomes and reduce therapy side effects. Graphene and more recently, MXene, are the main representatives of the family of two-dimensional (2D) materials and are widely studied as multimodal nanoplatforms for cancer diagnostics and treatment, in particular leveraging their potentialities as photodynamic therapeutic agents. Indeed, due to their irreplaceable physicochemical properties, they are virtuous allies for photodynamic therapy (PDT) in combination with bioimaging, photothermal therapy, as well as drug and gene delivery. In this review, the rapidly progressing literature related to the use of these promising 2D materials for cancer theranostics is described in detail, highlighting all their possible future advances in PDT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA