Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37581441

RESUMO

Fire blight, a disease of pome fruits caused by the bacterium Erwinia amylovora, has become increasingly difficult to manage after the emergence of streptomycin-resistant strains. Alternative antibiotics and copper are available; however, these chemicals have use restrictions in some countries and also can carry risks of phytotoxicity. Therefore, there is growing interest in biological-based management options, with bacteriophage (phages) showing promise, as these naturally occurring pathogens of bacteria are easy to isolate and grow. However, there are several technical challenges regarding the implementation of phage biocontrol in the field as the viral molecules suffer from ultraviolet radiation (UVR) degradation and can die off rapidly in the absence of the host bacterium. In this work we assessed the efficacy of Erwinia phages and a commercial phage product for blossom blight control in the field across multiple locations in the eastern United States. In these tests, disease control ranged from 0.0 to 82.7%, and addition of a UVR protectant only resulted in significantly increased disease control in 2 of 12 tests. We also analyzed microbial community population changes in response to phage application. Changes in bacterial community diversity metrics over time were not detected, however relative abundances of target taxa were temporarily reduced after phage applications, indicating that these phage applications did not have deleterious effects on the flower microbiome. We have demonstrated that biological control of fire blight with phages is achievable, but a better understanding of phage:pathogen dynamics is required to optimize disease control efficacy.

2.
Phytopathology ; 113(12): 2152-2164, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37399041

RESUMO

Fire blight, caused by Erwinia amylovora, is a destructive disease of pome fruit trees. In the United States, apple and pear growers rely on applications of copper and antibiotics during bloom to control fire blight, but such methods have already led to regional instances of resistance. In this study, we used transcriptome analyses and field trials to evaluate the effectiveness of three commercially available plant defense elicitors and one plant growth regulator for fire blight management. Our data indicated that foliar applications of acibenzolar-S-methyl (ASM; Actigard 50WG) triggered a strong defense-related response in apple leaves, whereas applications of Bacillus mycoides isolate J (LifeGard WG) or Reynoutria sachalinensis extract (Regalia) did not. Genes upregulated by ASM were enriched in the biological processes associated with plant immunity, such as defense response and protein phosphorylation. The expression of several pathogenesis-related (PR) genes was induced by ASM as well. Surprisingly, many differentially expressed genes in ASM-treated apple leaves overlapped with those induced by treatment with prohexadione-calcium (ProCa; Apogee), a plant growth regulator that suppresses shoot elongation. Further analysis suggested that ProCa likely acts similarly to ASM to stimulate plant immunity because genes involved in plant defense were shared and significantly upregulated (more than twofold) by both treatments. Our field trials agreed with the transcriptome study, demonstrating that ASM and ProCa exhibit the best control performance relative to the other biopesticides. Taken together, these data are pivotal for the understanding of plant response and shed light on future improvements of strategies for fire blight management.


Assuntos
Erwinia amylovora , Malus , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma , Doenças das Plantas/genética , Malus/genética , Frutas , Erwinia amylovora/genética , Erwinia amylovora/metabolismo
3.
Microbiome ; 11(1): 133, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322527

RESUMO

BACKGROUND: Hydrogen gas (H2) is a common product of carbohydrate fermentation in the human gut microbiome and its accumulation can modulate fermentation. Concentrations of colonic H2 vary between individuals, raising the possibility that H2 concentration may be an important factor differentiating individual microbiomes and their metabolites. Butyrate-producing bacteria (butyrogens) in the human gut usually produce some combination of butyrate, lactate, formate, acetate, and H2 in branched fermentation pathways to manage reducing power generated during the oxidation of glucose to acetate and carbon dioxide. We predicted that a high concentration of intestinal H2 would favor the production of butyrate, lactate, and formate by the butyrogens at the expense of acetate, H2, and CO2. Regulation of butyrate production in the human gut is of particular interest due to its role as a mediator of colonic health through anti-inflammatory and anti-carcinogenic properties. RESULTS: For butyrogens that contained a hydrogenase, growth under a high H2 atmosphere or in the presence of the hydrogenase inhibitor CO stimulated production of organic fermentation products that accommodate reducing power generated during glycolysis, specifically butyrate, lactate, and formate. Also as expected, production of fermentation products in cultures of Faecalibacterium prausnitzii strain A2-165, which does not contain a hydrogenase, was unaffected by H2 or CO. In a synthetic gut microbial community, addition of the H2-consuming human gut methanogen Methanobrevibacter smithii decreased butyrate production alongside H2 concentration. Consistent with this observation, M. smithii metabolic activity in a large human cohort was associated with decreased fecal butyrate, but only during consumption of a resistant starch dietary supplement, suggesting the effect may be most prominent when H2 production in the gut is especially high. Addition of M. smithii to the synthetic communities also facilitated the growth of E. rectale, resulting in decreased relative competitive fitness of F. prausnitzii. CONCLUSIONS: H2 is a regulator of fermentation in the human gut microbiome. In particular, high H2 concentration stimulates production of the anti-inflammatory metabolite butyrate. By consuming H2, gut methanogenesis can decrease butyrate production. These shifts in butyrate production may also impact the competitive fitness of butyrate producers in the gut microbiome. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Hidrogenase , Microbiota , Humanos , Butiratos/metabolismo , Fermentação , Hidrogenase/metabolismo , Acetatos/metabolismo , Ácido Láctico/metabolismo , Formiatos
4.
Mol Plant Microbe Interact ; 36(7): 411-424, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36853195

RESUMO

Tar spot is a devasting corn disease caused by the obligate fungal pathogen Phyllachora maydis. Since its initial identification in the United States in 2015, P. maydis has become an increasing threat to corn production. Despite this, P. maydis has remained largely understudied at the molecular level, due to difficulties surrounding its obligate lifestyle. Here, we generated a significantly improved P. maydis nuclear and mitochondrial genome, using a combination of long- and short-read technologies, and also provide the first transcriptomic analysis of primary tar spot lesions. Our results show that P. maydis is deficient in inorganic nitrogen utilization, is likely heterothallic, and encodes for significantly more protein-coding genes, including secreted enzymes and effectors, than previous determined. Furthermore, our expression analysis suggests that, following primary tar spot lesion formation, P. maydis might reroute carbon flux away from DNA replication and cell division pathways and towards pathways previously implicated in having significant roles in pathogenicity, such as autophagy and secretion. Together, our results identified several highly expressed unique secreted factors that likely contribute to host recognition and subsequent infection, greatly increasing our knowledge of the biological capacity of P. maydis, which have much broader implications for mitigating tar spot of corn. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Doenças das Plantas , Zea mays , Estados Unidos , Zea mays/genética , Zea mays/microbiologia , Doenças das Plantas/microbiologia , Perfilação da Expressão Gênica
5.
Mol Plant Pathol ; 23(6): 855-869, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35246928

RESUMO

The enterobacterial pathogen Erwinia amylovora uses multiple virulence-associated traits to cause fire blight, a devastating disease of apple and pear trees. Many virulence-associated phenotypes have been studied that are critical for virulence and pathogenicity. Despite the in vitro testing that has revealed how these systems are transcriptionally regulated, information on when and where in infected tissues these genes are being expressed is lacking. Here, we used a high-throughput sequencing approach to characterize the transcriptome of E. amylovora during disease progression on apple flowers under field infection conditions. We report that type III secretion system genes and flagellar genes are strongly co-expressed. Likewise, genes involved in biosynthesis of the exopolysaccharide amylovoran and sorbitol utilization had similar expression patterns. We further identified a group of 16 genes whose expression is increased and maintained at high levels throughout disease progression across time and tissues. We chose five of these genes for mutational analysis and observed that deletion mutants lacking these genes all display reduced symptom development on apple shoots. Furthermore, these induced genes were over-represented for genes involved in sulphur metabolism and cycling, suggesting the possibility of an important role for maintenance of oxidative homeostasis during apple flower infection.


Assuntos
Erwinia amylovora , Malus , Progressão da Doença , Flores/genética , Flores/microbiologia , Malus/microbiologia , Doenças das Plantas/microbiologia , Transcriptoma/genética , Fatores de Virulência/metabolismo
6.
BMC Bioinformatics ; 18(1): 538, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29212440

RESUMO

BACKGROUND: One of the most crucial steps in high-throughput sequence-based microbiome studies is the taxonomic assignment of sequences belonging to operational taxonomic units (OTUs). Without taxonomic classification, functional and biological information of microbial communities cannot be inferred or interpreted. The internal transcribed spacer (ITS) region of the ribosomal DNA is the conventional marker region for fungal community studies. While bioinformatics pipelines that cluster reads into OTUs have received much attention in the literature, less attention has been given to the taxonomic classification of these sequences, upon which biological inference is dependent. RESULTS: Here we compare how three common fungal OTU taxonomic assignment tools (RDP Classifier, UTAX, and SINTAX) handle ITS fungal sequence data. The classification power, defined as the proportion of assigned OTUs at a given taxonomic rank, varied among the classifiers. Classifiers were generally consistent (assignment of the same taxonomy to a given OTU) across datasets and ranks; a small number of OTUs were assigned unique classifications across programs. We developed CONSTAX (CONSensus TAXonomy), a Python tool that compares taxonomic classifications of the three programs and merges them into an improved consensus taxonomy. This tool also produces summary classification outputs that are useful for downstream analyses. CONCLUSIONS: Our results demonstrate that independent taxonomy assignment tools classify unique members of the fungal community, and greater classification power is realized by generating consensus taxonomy of available classifiers with CONSTAX.


Assuntos
DNA Fúngico/genética , DNA Intergênico/genética , Fungos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Microbiologia Ambiental , Fungos/classificação , Fungos/genética , Genoma Fúngico/genética , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA