Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 16(4): 608-614, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38197306

RESUMO

This study focused on creating a SERS composite particle specifically designed for detecting malachite green. We synthesized silver nano-dendritic structures on p-type porous silicon using an external electric field, separating them from the silicon wafer. Ultrasonic crushing yielded irregular silver nanodendrite-modified porous silicon composite particles. Upon being tested in an aqueous solution of malachite green, these composite particles demonstrated significant surface-enhanced Raman scattering effects. Our findings highlight the exceptional performance of the SERS substrate composed of porous silicon and irregular silver nano-dendritic particles. It exhibited high sensitivity, specificity, consistent signal strength, and reliability in detecting trace amounts of malachite green in water. Under ideal conditions, the substrate could detect malachite green at concentrations as low as 10-8 M. Moreover, its swift response to trace amounts of malachite green in fish underscores its potential as an effective Raman detector.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36762916

RESUMO

A microneedle has been greatly recognized as one of the most promising devices for novel transdermal drug delivery system due to its capacity of piercing the protective stratum corneum with a minimally invasive and painless manner. During the past two decades, although numerous achievements have been made in the structure and material combination of microneedles, they mostly focus on the pharmacology and functionality of microneedles, and little is reported about how to design the shape of microneedles to reduce insertion force and especially improve penetration efficiency. Using the developed finite element method, we designed three-section microneedles (TSMN) with various sizes and evaluated their maximum insertion force, penetration efficiency, drug delivery amount and strength. The simulation results demonstrate that the well-designed TSMN with shaft width of 60 µm exhibits a lower maximum insertion force of 116.68 mN relative to 167.92 mN of conical microneedle and an effective penetration length of 81.6% relative to 71.38% of conical microneedle. Besides, the optimized TSMN with shaft width of 80 µm shows similar maximum insertion force and 2.3 times the drug delivery amount compared to conical microneedle. These excellent properties are attributed to the optimized design of the shape curve of TSMN sidewall. Such results may provide an inspiration of microneedle design for low insertion force and high penetration efficiency.


Assuntos
Epiderme , Agulhas , Análise de Elementos Finitos , Sistemas de Liberação de Medicamentos/métodos , Pele , Administração Cutânea
3.
Macromol Biosci ; 24(3): e2300283, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37815087

RESUMO

Soft bioelectronics have great potential for the early diagnosis of plant diseases and the mitigation of adverse outcomes such as reduced crop yields and stunted growth. Over the past decade, bioelectronic interfaces have evolved into miniaturized conformal electronic devices that integrate flexible monitoring systems with advanced electronic functionality. This development is largely attributable to advances in materials science, and micro/nanofabrication technology. The approach uses the mechanical and electronic properties of functional materials (polymer substrates and sensing elements) to create interfaces for plant monitoring. In addition to ensuring biocompatibility, several other factors need to be considered when developing these interfaces. These include the choice of materials, fabrication techniques, precision, electrical performance, and mechanical stability. In this review, some of the benefits plants can derive from several of the materials used to develop soft bioelectronic interfaces are discussed. The article describes how they can be used to create biocompatible monitoring devices that can enhance plant growth and health. Evaluation of these devices also takes into account features that ensure their long-term durability, sensitivity, and reliability. This article concludes with a discussion of the development of reliable soft bioelectronic systems for plants, which has the potential to advance the field of bioelectronics.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Eletrônica/métodos , Conformação Molecular
4.
Nanoscale Res Lett ; 14(1): 319, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31599355

RESUMO

In this study, a surface diffraction two-dimensional (2D) grating structure was placed on the topmost layer of distributed Bragg reflectors (DBRs) for biosensing. Bloch surface wave (BSW) resonance was realized by coupling a 2D subwavelength hole-array grating and could be excited at different locations: the surface of 2D-grating layer or the inter-face between the DBR and bio-solution. Material losses in the multilayer dielectric were measured to test the robustness of this scheme. Both the surface diffraction-grating BSW (DG-BSW) and the alternative guided grating-coupled BSW (GC-BSW) configuration showed markedly enhanced angular sensitivity compared to conventional prism-coupled schematics. Exciting these modes using a grating-coupling technique appears to yield different extreme sensitivity modes with a maximum of 1190°/RIU for DG-BSW and 2255°/RIU for GC-BSW. Refractive index sensors with a high figure of merit may be realized via such compact configurations.

5.
Appl Opt ; 58(12): 3187-3192, 2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-31044793

RESUMO

A bilayer asymmetric photonic crystal slab made of porous Si3N4/SiO2 is designed as a biosensor by considering the optical performance of this photonic crystal slab with a square lattice based on rigorous coupled-wave analysis theory and wavelength interrogation methods. The results show that this bilayer asymmetric photonic crystal can be used as a biosensor according to its excellent linearity relationship between the guided resonance peak shift and refractive index of aqueous solution with or without glycerol. The theoretical sensitivity value of the bilayer asymmetric photonic crystal biosensor is achieved as (S>286 nm/RIU) in the wavelength range from 1400 nm to 1600 nm. These results also indicate that the asymmetry bilayer structure has an important influence on its optical characteristic and sensitivity of the bilayer photonic crystal biosensor, and hence, it can be modified by changing the lattice constant and slab thickness. This research paper is very useful for understanding the application and design of biosensors based on porous structures.


Assuntos
Técnicas Biossensoriais/instrumentação , Compostos de Silício/química , Dióxido de Silício/química , Cristalização , Fótons , Refratometria/instrumentação , Espalhamento de Radiação
6.
Biosens Bioelectron ; 105: 77-80, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29355782

RESUMO

Based on our produced polyclonal antibody capable of recognizing tetrabromobisphenol A bis(2-hydroxyethyl) ether (TBBPA-DHEE) and tetrabromobisphenol A mono(hydroxyethyl) ether (TBBPA-MHEE) (cross-reactivity, 100% for TBBPA DHEE; 98.7% for TBBPA MHEE), an important derivative and byproduct of tetrabromobisphenol A (TBBPA), respectively, a novel ultrasensitive competitive immunosensor was established using an electrochemical impedimetric strategy for the simultaneous detection of both chemicals. A significantly amplified electrochemical impedance spectroscopy (EIS) for quantitative target analysis was obtained through (i) the biocatalytic precipitation of 4-chloro-1-naphthol (CN) on the electrode surface triggered by horseradish peroxidase (HRP) and (ii) increased amounts of the enzyme with HRP-loaded silica nanoparticles carrying poly-brushes (SiO2@PAA) as labels, achieving a remarkable improvement in catalytic performance. Under the optimized conditions, the immunosensor showed satisfactory accuracy (recovery, 84.6-118%) and a good linear range (0.21- 111.31ng/mL) with a limit of detection (LOD) of 0.08ng/mL (S/N = 3) for TBBPA DHEE and TBBPA MHEE. In addition, the proposed approach was used to analyse real environmental water samples, and our results indicated that this immunosensor had great potential for the determination of the trace pollutants in aquatic environments.


Assuntos
Técnicas Biossensoriais/métodos , Espectroscopia Dielétrica/métodos , Monitoramento Ambiental/métodos , Retardadores de Chama/análise , Bifenil Polibromatos/análise , Poluentes Químicos da Água/análise , Éteres/análise , Peroxidase do Rábano Silvestre/química , Imunoensaio/métodos , Limite de Detecção , Naftóis/química , Dióxido de Silício/química , Água/análise
7.
Chemistry ; 24(14): 3397-3402, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29210123

RESUMO

The abnormal fibrillogenesis of amyloid peptides such as amyloid fibril and senior amyloid plaques, is associated with the pathogenesis of many amyloid diseases. Hence, modulation of amyloid assemblies is related to the possible pathogenesis of some diseases. Some two-dimensional nanomaterials, that is, graphene oxide, tungsten disulfide, exhibit strong modulation effects on the amyloid fibrillogenesis. Herein, the modulation effect of molybdenum disulfide on two amyloid peptide assemblies based on the label-free techniques is presented, including quartz crystal microbalance (QCM), AFM, and CD spectroscopy. MoS2 presents different modulating effects on the assembly of amyloid-ß peptide (33-42) [Aß (33-42)] and amylin (20-29), mainly owing to the distinct affinity between amyloid peptides and MoS2 . This is to our knowledge the first report of MoS2 as a modulator for amyloid aggregation. It enriches the variety of 2D nanomodulators of amyloid fibrillogenesis and explains the mechanism for the self-assembly of amyloid peptides, and expands the applications of MoS2 in biology.


Assuntos
Peptídeos beta-Amiloides/química , Placa Amiloide/química , Amiloide , Amiloidose , Dissulfetos/metabolismo , Grafite , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Molibdênio/metabolismo , Nanoestruturas , Fragmentos de Peptídeos , Técnicas de Microbalança de Cristal de Quartzo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA