Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 192: 110596, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36549179

RESUMO

Radioactive material inspection in public is important to nuclear safety, and it is also the key security for holding large-scale events, while fast and efficient means of detecting radioactive materials are an important technical guarantee for nuclear safety. In this paper, energy and time distribution characteristics information of the natural background and target nuclide gamma particles are used to improve the sequential background comparison method. By using those energy and time distribution characteristics information, with the half-life and characteristic gamma-ray energy and branching ratio information of the nuclide, the response time and the identification accuracy of extremely low radioactive nuclides detected under natural-radiation background can be improved. Based on the theoretical research, the particle event acquisition device with the LaBr3(Ce) detector was used to carry out the experimental verification, and the results show that, this method can identify 137Cs (characteristic energy of 0.662 MeV,8700 Bq,the position relative to the detector is 30 cm) in 6.2 s, and identify 60Co (characteristic energy of 1.173 MeV and 1.332 MeV, 4500 Bq, the position relative to the detector is 15 cm) in 5.9 s. Experiments prove that the improved background comparison-based sequential Bayesian method can identify low radioactivity radionuclides under natural-radiation background rapidly.


Assuntos
Monitoramento de Radiação , Radioatividade , Poluentes Radioativos do Solo , Teorema de Bayes , Poluentes Radioativos do Solo/análise , Meia-Vida , Radiação de Fundo
2.
Appl Radiat Isot ; 181: 110072, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34968882

RESUMO

Thermoluminescence (TL) dating is one of the most significant chronological tools used in Quaternary research. However, for changes in the characteristics of quartz, the larger deviation is still a problem in TL dating, especially with the single-aliquot regeneration-does (SAR) procedure. In the SAR-TL protocol, changes in the characteristics of quartz inevitably cause a shift in the TL peak position and a reduction in the sensitivity of the TL peak during repetitive thermal treatment. In this paper, we studied the optimal TL parameters to minimize the effect of the above problems for TL dating. Based on the optimization experiment combining OSL and TL measurements, the optimal preheat temperature was found to be 300 °C for both silt-sized grains and sand-sized grains, which eliminates the remainder of the 325 °C TL signals and inhibits the 375 °C TL peak position shift. Referring to the test does in SAR-OSL dating protocol, the optimal test doses, 200 Gy and 250 Gy for the silt-sized grains and sand-sized grains respectively, were determined to correct the reduction in TL sensitivity, and they were added to improve the SAR-TL protocol. The improved SAR-TL protocol with the optimal measurement parameters, which we called the accurate-parametric SAR-TL protocol, improves the accuracy of quartz TL dating and expands the range of accurate TL dating. For the experimental doses of 400 Gy and 700 Gy, the relative error of De obtained by the accurate-parametric SAR-TL protocol was less than ±5.5% for both silt-sized grains and sand-sized grains. In addition, we discussed the application conditions of the accurate-parametric SAR-TL protocol and the method that obtains the same level of thermal lag for different luminescence measurement equipment.

3.
Appl Radiat Isot ; 179: 110028, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34800759

RESUMO

The traditional nuclear pulse signal generator outputs the nuclear pulse signal of specific waveform according to the input pulse amplitude probability distribution and counting rate, following the signal output laws of radiation detector in both pulse amplitude and time interval. However, the output waveform is generally regulated by an analog circuit, with the single waveform and difficult parameter adjustment. In this study, the digital C-R and R-C filters were explored, a cascading digital C-R or R-C filter algorithm was proposed, realizing multiple pragmatic nuclear pulse signal outputs through the serial or parallel connection of multiple digital filters. The actual test results show that the nuclear pulse signal generator constructed by this algorithm can simulate the nuclear pulse signals under different detectors and counting rates, thus expanding the scope of application and improving the flexibility of digital nuclear pulse signal generators.

4.
Radiat Prot Dosimetry ; 189(4): 505-516, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32472124

RESUMO

Large-scale water conservancy projects bear much economic and social significance. However, there is a lack of systematic research on how such projects affect radioactivity levels in regional water bodies. For the first time, the present paper uses data for nearly 10 y at different impoundment levels during construction of the dam to analyze changes in water radioactivity concentration levels in China's Three Gorges region, in order to provide a valuable reference for evaluating the impact of large-scale water conservancy projects on radioactivity concentration levels. Results show that gross α, gross ß, U, Th, 226Ra, 40K, 90Sr and 137Cs levels in the water bodies of the Three Gorges region fall within normal limits and annual effective dose for the adults, children and infants are below the WHO recommended reference level of 0.1 mSv per y. The period where the sample was collected and spatial distribution are the main reasons why some radionuclides are not normally distributed. Different water levels during different periods result in large variations in the levels of certain radionuclides, indicating that water levels can have a strong influence on radionuclide levels in reservoir regions. Hence, when evaluating the impact of large-scale water conservancy projects on radioactivity levels, analysis should be carried out on samples collected during different periods in order to make accurate assessments.


Assuntos
Radioatividade , Rádio (Elemento) , Adulto , Radioisótopos de Césio , Criança , Humanos , Lactente , Rádio (Elemento)/análise , Radioisótopos de Estrôncio , Água
5.
Appl Radiat Isot ; 137: 68-72, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29587161

RESUMO

The sensitivity calculation of airborne gamma-ray spectrometer (AGS) is usually performed by on-ground or in-flight calibration. However, both methods are cost-ineffective or not permissive, especially for artificial radioisotopes with short half-lives. Alternative to these methods is the Monte Carlo simulation, which has been widely applied over the last few decades. The greatest challenge to the practicability of the Monte Carlo simulation in the AGS calibration is its low computational efficiency for ensuring an acceptable reliability. This article proposes a hybrid numerical method for the sourceless AGS calibration by combining the deterministic point-kernel approach and the Monte Carlo simulation. This method is not only more efficient than the source-based calibration by an empirical method, but also independent of the source availability for on-ground or in-flight calibration. For a given soil test model, AGS sensitivities calculated by this hybrid method agree well with those obtained from the empirical method for the in-flight calibration.

6.
Guang Pu Xue Yu Guang Pu Fen Xi ; 37(2): 607-11, 2017 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-30292180

RESUMO

In order to research the effect of X-ray fluorescence (XRF) analysis on the results in the sample's micro particles, MCNPX models had been established for an X-ray fluorescence analyzer in this paper. It had studied the characteristics of the samples with different particle sizes, the fluorescence peak counts, the peak to total ratios and the peak to source ratios. A micro particle analysis experiment had been designed for its verification. The results showed that: as for the relationship between the fluorescence intensity and the particle sizes, the MCNPX calculations were consistent with the theoretical, but contrary with the experimental results; the reason is that some hypotheses about samples in the MCNPX models were contrary with the actual states; the samples were crushed by grinding to small particles and tableting process, the MCNPX calculations and experimental results can be conversion; when the particle sizes of the samples reached the certain sizes, the fluorescence peak counts, the peak to total ratios and the peak to source ratios were stable value; within a particular size range, the influence of the particle size effects cannot be ignored, otherwise this influence can be ignored. The research methods and conclusions in this paper can provide a technical reference guide for X-ray analysis in practices.

7.
Guang Pu Xue Yu Guang Pu Fen Xi ; 37(1): 262-6, 2017 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-30221889

RESUMO

Semiconductor detector is widely used in energy dispersive X-ray fluorescence measurements due to its excellent performance. In this paper, Si-PIN and CdTe semiconductor detectors were studied, performances of the two detectors were compared in material properties, detection efficiency, energy resolution and other aspects. Focused on the performance of the detectors influenced by the thickness of detector sensitive area, energy of incident X-ray, shaping time of post-stage circuit, and analyzed the differences of energy spectrum caused by escape peaks and hole trailing. Aiming at the problem of incomplete hole collection in detector, a digital multi-channel analyzer (DMCA) based on FPGA with rise-time discriminator was designed, it could reduce the influence of hole trailing effectively and improve energy resolution. The experimentation results indicate that the detection efficiency of Si-PIN and CdTe is roughly equal when energy is below 15 keV while CdTe has much higher detection efficiency than Si-PIN when energy is above 15 keV. The optimum forming time of the Si-PIN detector is about 10 µs, and the CdTe detector is about 2.6 µs, so the CdTe detector is more suitable for the high count rate condition. Si-PIN detector has better energy resolution than CdTe detector for different energy incident X-ray. CdTe detector has obvious hole tailing effect and the energy resolution of CdTe detector is significantly improved by using DMCA with rise-time discrimination.

8.
Guang Pu Xue Yu Guang Pu Fen Xi ; 37(3): 919-23, 2017 Mar.
Artigo em Chinês, Inglês | MEDLINE | ID: mdl-30160424

RESUMO

The mineral constituents of the rock sample can be analyzed with in-situ energy dispersive X-ray fluorescence analysis technology (In-situ EDXRF), the matrix effect of rock sample will effects on measurement results. The Monte Carlo simulation method is used to conduct fluorescence analysis spectrum with ideal measurement conditions, which provides analytical data for matrix effect research. The measured spectrum of seventeen kinds rock samples are being simulated, which has the same Cu content. Therefore, the influences with matrix effect of rock sample in in-situ EDXRF take Cu element for example. Based on correlation between Cu Kα X-ray intensity and spectral parameters, considering elements similarity of all kinds rock samples, it is found that the variation the Cu Kα X-ray intensity not only by the control of rock elements composition or rock classification. The matrix effect of rock samples must be classified according correlation between Cu Kα X-ray intensity and spectral parameters. After the matrix effect classification, fifteen kinds of rock samples, which belong to the same matrix effect, can be corrected more effective. Based on principal component analysis of similar matrix effect rock samples, it is found that the scattering background, target element K-series X-ray of X-ray tube and its incoherent scatter intensity can be a good description of Cu Kα X-ray intensity which is affected by rock matrix, thus it can be used to correct the Cu element measurement results. Certainly, this technology can also provide reference for matrix effect correction to other elements in rock.

9.
Guang Pu Xue Yu Guang Pu Fen Xi ; 37(3): 924-8, 2017 Mar.
Artigo em Chinês, Inglês | MEDLINE | ID: mdl-30160431

RESUMO

The X-ray fluorescence well logging technology is a significant method that can make quantitative analysis orsemi-quantitative analysis on the wellface. This method is very important to mineral exploration. The spectrum shifting is often observed in the X-rayfluorescence well logging because the temperature in the well changes acutely. The hardware is used to release the spectrum shifting and the software method is used to rescale the tiny spectrum shifting. There are too manyspectra to be rescaled in a well logging task by manually. In this paper, an auto method to rescale spectrum shifting, via the expert system model which is based on the special process to rescale spectrum shifting in manual, is presented. The symmetric zero-area conversion method, which is not sensitive to the changes of the baseline, is used to research the peaks. And then, the characteristic peaks will be identified by the standard errors, automatically. The prior knowledge (the last energy scale) and the gauss probability density function are used to analyze the peaks qualitatively and confirm the energy of characteristic peaks. Then the least square method is applied energy calibration. The singular deviation point, away from the calibrationline, will be rejected and the energy ratio will be obtained again. This method is applied for rescaling spectrum shifting in 322 spectra and obtains a satisfactory achievement.

10.
Appl Radiat Isot ; 120: 95-100, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27984710

RESUMO

A differential-hybrid charge sensitive preamplifier (CSP) was designed by taking a monolithic dual N-Channel Junction Field-effect Transistor (JFET) and a high-speed, low-noise, operational amplifier as the core parts. Input-stage of the circuit employs low-noise differential dual JFET, which ensures high input impedance and low noise. The differential dual transistor makes the quiescent point of the first-stage differential output stable, which is convenient for connecting with the post stage high-speed operational amplifier. Broadband could be amplified by connecting to the double differential dual transistors through the folded cascode-bootstrap. The amplifying circuit which replaces the interstage and post stage discrete components of a traditional CSP with integrated operational amplifier is simpler and more reliable. It simplifies the design of the quiescent point, gives full play to advantages of releasing large open-loop gain, and improves charge-voltage conversion gain stability. Particularly, the charge-voltage conversion gain is larger under a smaller feedback capacitor, thus enabling to gain better signal-noise ratio. The designed CSP was tested, reporting 3.3×1013 V/C charge sensitivity, about 90ns rise time of signals, 35:1 signal-noise ratio to gamma-rays of 137Cs (662keV) and a 0.023 fC/pF noise slope. Gamma-rays of 241Am (59.5keV) were measured by the BPX66 detector and the designed CSP under room temperature, providing 1.97% energy resolution.

11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(3): 838-41, 2016 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-27400534

RESUMO

Aiming at the self-excitation effect on the interference of measurements which exist in the process of Energy dispersive X-ray fluorescence method for uranium measurement. To solve the problem of radioactive isotopes only used as excitation source in determination of uranium. Utilizing the micro X-ray tube to test Self-excitation effect to get a comparison of the results obtained by three different uranium ore samples--109 Cd, 241 Am and Mirco X-ray tube. The results showed that self-excitation effect produced the area measure of characteristic X-ray peak is less than 1% of active condition, also the interference of measurements can be negligible. Photoelectric effect cross-section excited by 109 Cd is higher, corresponding fluorescence yield is higher than excited by 241 Am as well due to characteristics X-ray energy of 109 Cd, 22.11 & 24.95 KeV adjacent to absorption edge energy of L(α), 21.75 KeV, based on the above, excitation efficiency by 109 Cd is higher than 241 Am; The fact that measurement error excited by 241 Am is significantly greater than by 109 Cd is mainly due to peak region overlap between L energy peaks of uranium and Scattering peak of 241 Am, 26.35 keV, These factors above caused the background of measured Spectrum higher; The error between the uranium content in ore samples which the X-ray tube as the excitation source and the chemical analysis results is within 10%. Conclusion: This paper come to the conclusion that the technical quality of uranium measurement used X-ray tube as excitation source is superior to that in radioactive source excitation mode.

12.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(3): 868-73, 2016 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-27400540

RESUMO

Monitoring atmospheric particulate matter requires real-time analysis, such as particulate matter's concentrations, their element types and contents. An analyzer which is based on ß and X rays analysis techniques is designed to meet those demands. Applying ß-ray attenuation law and energy dispersive X-ray fluorescence analysis principle, the paper introduces the analyzer's overall design scheme, structure, FPGA circuit hardware and software for the analyzer. And the analyzer can measure atmospheric particulate matters' concentration, elements and their contents by on-line analysis. Pure elemental particle standard samples were prepared by deposition, and those standard samples were used to set the calibration for the analyzer in this paper. The analyzer can monitor atmospheric particulate matters concentration, 30 kinds of elements and content, such as TSP, PM10 and PM2.5. Comparing the measurement results from the analyzer to Chengdu Environmental Protection Agency's monitoring results for monitoring particulate matters, a high consistency is obtained by the application in eastern suburbs of Chengdu. Meanwhile, the analyzer are highly sensitive in monitoring particulate matters which contained heavy metal elements (such as As, Hg, Cd, Cr, Pb and so on). The analyzer has lots of characteristics through technical performance testing, such as continuous measurement, low detection limit, quick analysis, easy to use and so on. In conclusion, the analyzer can meet the demands for analyzing atmospheric particulate matter's concentration, elements and their contents in urban environmental monitoring.

13.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(4): 1240-4, 2016 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-30052355

RESUMO

This paper proposes the analyzing method of adopting wavelength dispersive X-ray fluorescence spectrometry to measure the content of Cu and Zn in PM2.5. PTFE membrane is used to prepare standard samples and atmospheric particulate samples; a research into sample cup's structure,using polypropylene film of 6.7 µm to help to improved sample cup to package atmospheric particulate samples. The improved sample cup is used to measure the content of Cu and Zn in atmospheric particulate, which can obviously reduce background, improve peak/background ratio and decrease detection limit to target element; discussion is made on the measurement condition of Cu and Zn in PM2.5: taking Kα line as analysis line of Cu and Zn, selecting PX10 as analyzer crystal, using 300 µm pitch collimator, adopting scintillation detector for the Kα of Zn, applying the integrating of flow-gas proportional counter and closed-end proportional counter to the Kα of Cu, setting 50 kV, 50 mA as operating voltage and current. The prepared Cu and Zn standard sample is used to set up working curve, the results show that their linear correlations are better, accuracy are higher, relative standard deviations of Cu and Zn are 2.43% and 2.00%(n=8), detection limit are 0.028 and 0.021 µg·cm-2respectively, and analysis of the single sample only need 60 s. To sum up, this method can quickly and accurately analyze the content of Cu and Zn in PM2.5, and provide scientific basis for study the element content characteristics and source apportionment.

14.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(7): 2034-7, 2015 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-26717774

RESUMO

The X-ray Fluorescence Analysis(XRFA) is an important and efficient method on the element anylsis and is used in geology, industry and environment protection. But XRFA has a backdraw that the determination limit and accuracy are effected by the matrix of the sample. Now the fundamental parameter is usually used to calculate the content of elements in XRFA, and it is an efficient method if the matrix and net area of characteristic X-ray peak are obtained. But this is invalide in in-stu XRFA. Also the method of net area and the "black material" of sample are the key point of the fundamental parameter method when the Energy Dispersive X-ray Fluorescence Analysis(EDXRFA) method is used in the low content sample. In this paper a advanced fundamental parameter method is discussed. The advanced fundamental parameter method includes the spectra analysis and the fundamental parameter method, which inserts the overlapping peaks separation method into the iteration process of the fundamental parameter method. The advanced method can resolve the net area and the quantitative analysis. The advanced method is used to analyse the standard sample. Compare to the content obtained from the coefficient method, the precision of Cu, Ni and Zn is better than coeffieciency method. The result shows that the advanced method could improve the precision of the EDXRFA, so the advanced method is better than the coefficient method.

15.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(7): 2043-8, 2015 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-26717776

RESUMO

N, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Ba and Pb in herb tea were determined by X-ray fluorescence spectrometry with pressed powder pellets. The measuring conditions of target elements were investigated, including how to select its analytical line. In addition to Ba and Pb using L line, Kalpha line was selected for the rest. When the Compton scattered radiation of Rh Kalpha was measured, The X-ray tube voltage should be appropriately reduced, and the appropriate tube current should be selected. The matrix effect was corrected by empirical coefficient method and using scattered radiation (the Rayleigh scattered radiation of Rh Lalpha, the scattered background of 0.1876 nm wavelength position and the Compton scattered radiation of Rh Kalpha) as internal standard, and the spectral overlapping interference of some elements (N, Na, Ca, Ti, Mn, Sr and Ba) was corrected. For the target elements, the detection limit of this method was low, and its accuracy and precision were high. The results showed that there were abandon of elements in herb tea, of which different kinds had different components, even the same kind of herb tea with different source had some difference in element and content more or less, however, there was a lot of similarity between the features of its components. In a word, this method could achieve multi-element determination of herb tea, and it was simple in operation, low cost, rapid, and accurate.


Assuntos
Espectrometria de Fluorescência , Chás de Ervas/análise , Oligoelementos/análise
16.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(10): 2891-4, 2015 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-26904839

RESUMO

The miniature transmission X-ray tube is widely used in energy dispersive X-ray Fluorescence Analysis (EDXRFA). The miniature transmission X-ray tube with a small, low power consumption, X-ray emission efficiency that can be made the excitation source of handheld X-ray energy dispersive fluorescence analyzer. Beryllium (Be) is the most commonly used X-ray window material. But beryllium is expensive and toxic. At the same time set filtering window by aluminum (Al) to reducing low-energy scattering rays. This paper be adopted Al for exit window material of miniature transmission X-ray tube, achieve high-energy rays transmission and low-energy scattered radiation shielding, at the same time reduce production cost and difficulty. The present paper simulate the X-ray tube output spectrum of silver (Ag) target and aluminum window with different thickness by MCNP5. We consider the X-ray of low energy part is completely shielded when aluminum windows thickness is greater than 1.5 mm. We can conclude that 2 µm and 0.8 mm are the best combination of target thickness and aluminum windows through comparative analysis of existing research results. Then we can get flux of high energy part is big and low energy part is small when the target is 2 µm thick Ag and the window is 0.8 mm thick Al.

17.
Appl Radiat Isot ; 97: 63-69, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25544664

RESUMO

The time constant of the output signal of the front-end readout circuit of a traditional gamma-ray spectrometer with a NaI(Tl)+PMT structure is affected by temperature, measurement environment and the signal transmission cable, so it is difficult to get a good resolution spectrum, especially at higher counting rates. In this paper, a reset charge sensitive amplifier (RCSA) is designed for the gamma-ray spectrometer with a NaI(Tl)+PMT structure. The designed RCSA outputs a step signal, thus enabling the acquisition of double-exponential signals with a stable time constant by using the next stage of a CR differentiating circuit. The designed RCSA is mainly composed of a basic amplifying circuit, a reset circuit and a dark current compensation circuit. It provides the output step signal through the integration of the PMT output charge signal. When the amplitude of the step signal exceeds a preset voltage threshold, it triggers the reset circuit to generate a reset pulse (about 5µs pulse width) to reset the output signal. Experimental results demonstrated that the designed RCSA achieves a charge sensitivity of 4.26×10(10)V/C, with a zero capacitance noise of 51.09fC and a noise slope of 1.98fC/pF. Supported by the digital shaping algorithm of the digital multi-channel analyzer (DMCA), it can maintain good energy resolution with high counting rates up to 150kcps and with a temperature range from -19°C to 50°C.

18.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(2): 562-4, 2014 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-24822440

RESUMO

In the energy dispersive X-ray fluorescence spectrum analysis, scintillation detector such as NaI (Tl) detector usually has a low energy resolution at around 8%. The low energy resolution causes problems in spectral data analysis especially in the high background and low counts condition, it is very limited to strip the overlapped spectrum, and the more overlapping the peaks are, the more difficult to peel the peaks, and the qualitative and quantitative analysis can't be carried out because we can't recognize the peak address and peak area. Based on genetic algorithm and immune algorithm, we build a new racial algorithm which uses the Euclidean distance as the judgment of evolution, the maximum relative error as the iterative criterion to be put into overlapped spectrum analysis, then we use the Gaussian function to simulate different overlapping degrees of the spectrum, and the racial algorithm is used in overlapped peak separation and full spectrum simulation, the peak address deviation is in +/- 3 channels, the peak area deviation is no more than 5%, and it is proven that this method has a good effect in energy dispersive X-ray fluorescence overlapped spectrum analysis.

19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(1): 252-6, 2014 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-24783571

RESUMO

Applying Monte Carlo method, the present paper simulates the emitted X-ray spectrum of miniature X-ray tube with thirteen thickness of beryllium window in the range from 50 to 500 microm. By analyzing the characteristic of the spectrums, the reasonable choice of thickness of beryllium window relies on the application and for the beryllium window it is not the thinner the better. Taking in-situ EDXRF as an example, though the emission X-ray intensity is higher as the thickness of the beryllium window becomes thinner, the proportion of useless low-energy X-ray (<5 keV) intensity to all energy X-ray intensity also is higher (>20%). The accuracy of in-situ EDXRF will be reduced when the high-throughput low-energy X-ray enters the detector. Therefore, this paper puts forward several parameters as judgment index for beryllium window thickness, which is described as follows: 1)The intensity ratios of the K-series X-ray to middle-energy (5-25 keV) bremsstrahlung and middle-high-energy (5-50 keV) bremsstrahlung (F1 and F3); 2)The intensity ratios of useless low-energy X-ray (<5 keV) to middle-energy (5-25 keV) X-ray and middle-high-energy (5-50 keV) X-ray (F2 and F4), it can reflect the relative intensity of useless low-energy X-ray. The simulation results demonstrate that with the increase in the beryllium window thickness, the value of F1 (F3) improves slowly, and the value of F2 (F4) decreases rapidly. In addition to the judgment index discussed above, and considering the X-ray shielded by beryllium window, the beryllium window of miniature X-ray tube can be determined. Based on simulation analysis, the thickness of around 250 microm is appropriate to miniature X-ray tube applied in the in-situ EDXRF. Comparing the emitted spectrum with 50 microm-thick beryllium window, 71.66% of low-energy X-rays are shielded, only 21.31% of X-rays with energy from 5 to 50 keV is shielded, the intensity ratio of low-energy X-ray to total energy X-ray is less than 10%, and the intensity proportion of K-series X-ray to middle-high energy X-ray maintains a high level. In other words, when the mobile X-ray source with 250 microm beryllium window is used in the in-situ EDXRF, proportion of effective signal is higher, and effect of energy resolution of the detection is least; Moreover, the relative intensity of the excitation spectral scattering background, which is obtained by detection for specimen excitation analysis, will remain at low level, thus to ensure the precision of the result of element analysis. For the beryllium window in the application of radiation therapy, the thicker the better. At this time, low-energy X-ray flux maintains a high level, and it can ensure that radiation dose is concentrated on treatment tissue.

20.
Appl Radiat Isot ; 85: 70-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24384396

RESUMO

Abnormal multi-crystal spectral drifts often can be observed when power on the airborne gamma-ray spectrometer. Currently, these spectral drifts of each crystal are generally eliminated through manual adjustment, which is time-consuming and labor-ineffective. To realize this quick automatic spectrum stabilization of multi-crystal, a frequency spectrum analysis method for natural gamma-ray background spectrum is put forward in this paper to replace traditional spectrum stabilization method used characteristic peak. Based on the polynomial fitting of high harmonics in frequency spectrum and gamma-ray spectral drift, it calculates overall spectral drift of natural gamma-ray spectrum and adjusts the gain of spectrometer by this spectral drift value, thus completing quick spectrum stabilization in the power on stage of spectrometer. This method requires no manual intervention and can obtain the overall spectral drift value automatically under no time-domain pre-processing to the natural gamma-ray spectra. The spectral drift value calculated by this method has an absolute error less than five channels (1024 resolution) and a relative error smaller than 0.80%, which can satisfy the quick automatic spectrum stabilization requirement when power on the airborne gamma-ray spectrometer instead of manual operation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA