RESUMO
Salicylate preservatives are widely used in consumer products and pharmaceuticals. This study investigates their potential endocrine-disrupting effects on neurosteroidogenesis, focusing on 5α-reductase type 1 (SRD5A1). We evaluated the effects of 13 salicylates on human SRD5A1 using SF126 glioblastoma cell microsomes and rat brain microsomes, examining dihydrotestosterone production in SF126 cells. Results revealed a hierarchy of inhibitory potency against human SRD5A1, with methyl salicylate (IC50, 71.93 µM) to menthyl salicylate (2.41 µM), indicating increasing potency. Kinetic analysis indicates their mixed/noncompetitive inhibitions. In SF126 cells, all salicylates at 100 µM significantly reduced dihydrotestosterone production. Rat SRD5A1 showed reduced sensitivity, with menthyl salicylate as the most potent inhibitor (IC50, 17.12 µM). Docking analysis suggests salicylates bind to the reduced nicotinamide adenine dinucleotide phosphate site of both human and rat SRD5A1. Bivariate correlation analysis highlights the influence of LogP, molecular weight, carbon number in the alcohol moiety, and pKa on inhibitory potency. 3D-QSAR revealed the importance of hydrophobic aromatic regions in SRD5A1 binding. This study delineates the inhibitory effects of salicylates and binding mechanisms on human and rat SRD5A1, providing insights into their impact on neurosteroid production.
RESUMO
This study delved into the impacts of 10 parabens on the activity of human and rat gonadal 3ß-hydroxysteroid dehydrogenase (3ß-HSD) within human KGN cell and rat testicular microsomes, as well as on the secretion of progesterone in KGN cells and the inhibitory potency was compared between human and rats. Intriguingly, the outcomes revealed that ethyl, propyl, butyl, hexyl, heptyl, nonyl, phenyl, and benzyl parabens displayed varying IC50 values for human 3ß-HSD2, from 4.15 to 139.96⯵M, demonstrating characteristics of mixed inhibitors. Notably, within KGN cells, all examined parabens, excluding nonyl and phenyl parabens, significantly inhibited progesterone secretion at 5-50⯵M. In the case of rats, the IC50 values for these parabens on gonadal 3ß-HSD1 fluctuated between 7.15 and 110.76⯵M, likewise functioning as mixed inhibitors. Through docking analysis, it was proposed that most parabens effectively bind to NAD+ and/or steroid binding site. Moreover, bivariate correlation analysis unveiled an inverse correlation between IC50 values and structural characteristics such as LogP, molecular weight, heavy atom number, and carbon number within the alcohol moiety of parabens. 3D-QSAR elucidated pivotal regions, comprising hydrogen bond donor, hydrogen bond acceptor, and hydrophobic region, with the most potent inhibitor nonyl paraben engaging with all regions, while the weakest inhibitor ethyl paraben interacted with the regions except for the hydrophobic region. In conclusion, this investigation underscored the inhibitory effects imparted by several parabens on both human and rat gonadal 3ß-HSD activity, with their inhibitory potency being modulated by aspects of hydrophobicity and carbon chain length.
RESUMO
Aromatase (CYP19A1), a pivotal enzyme in the biosynthesis of estradiol from testosterone, is predominantly expressed in reproductive tissues including placentas. This study investigated the effects of paraben acid and nine parabens on the activity of human and rat CYP19A1 using microsomes derived from human and rat placentas and on estradiol secretion in human choriocarcinoma BeWo cells. The results showed that propyl, butyl, hexyl, heptyl, and nonyl parabens significantly inhibited human CYP19A1 activity, with IC50 values of 66.37, 61.08, 55.65, 48.26, and 27.24⯵M, respectively. In BeWo cells, these parabens notably diminished estradiol secretion at concentrations of 100⯵M. Similarly, rat CYP19A1 was inhibited by these parabens, with IC50 values of 98.07, 70.10, 41.30, 27.93, and 6.33⯵M for propyl, butyl, hexyl, heptyl, and nonyl parabens, respectively. Kinetic analysis identified these compounds as mixed inhibitors. Bivariate correlation analysis revealed a negative correlation between the partition coefficient value, molecular weight, the number of carbon atoms in the alcohol moiety, as well as heavy atom number and IC50 values. Three-dimensional quantitative structure-activity relationship analysis highlighted the critical role of hydrophobic regions in determining inhibitory potency. Docking studies suggested that parabens interact with the heme-iron binding site of both human and rat CYP19A1. This study elucidates the inhibitory effects of various parabens on CYP19A1 and their binding mechanisms, thereby providing a deeper understanding of their potential impact on estrogen biosynthesis.
RESUMO
Parabens are preservatives used in personal care products, cosmetics, and pharmaceuticals. Steroid 5α-reductase 1 (SRD5A1) catalyzes the conversion of testosterone to dihydrotestosterone and is present in the brain, contributing to neurosteroid production. This study aimed to assess the effects of nine paraben preservatives on SRD5A1 in human SF126 glioblastoma cell and rat brain microsomes, particularly focusing on dihydrotestosterone production in SF126 cells. The results showed that methyl, ethyl, propyl, butyl, hexyl, heptyl, nonyl, phenyl, and benzyl paraben inhibited human SRD5A1, with nonylparaben having the strongest effect (7.59 µM). Additionally, kinetic analysis indicated that parabens acted as mixed/noncompetitive inhibitors, leading to a significant decrease in dihydrotestosterone production in SF126 cells. While rat SRD5A1 exhibited lower sensitivity to parabens, docking analysis revealed that parabens bind to the NADPH-binding site of both human and rat SRD5A1. In conclusion, these results highlight the inhibitory effects of paraben preservatives on SRD5A1 and elucidate their binding mechanisms, underscoring their role in hormone production.
RESUMO
Bisphenol H (BPH) has emerged as a potential alternative to bisphenol A (BPA), which has been curtailed for use due to concerns over its reproductive and endocrine toxicity. This study investigates whether BPH exerts antiandrogenic effects by impairing Leydig cell function, a critical component in testosterone production. We administered orally BPH to adult male rats at doses of 0, 1, 10, and 100â¯mg/kg/day for 7 days. Notably, BPH treatment resulted in a dose-dependent reduction in testicular testosterone levels, with significant decreases observed at ≥ 1â¯mg/kg/day. Additionally, BPH affected the expression of key genes involved in steroidogenesis and cholesterol metabolism, including Nr5a1, Nr3c4, Lhcgr, Scarb1, and Star, at higher doses (10 and/or 100â¯mg/kg/day). The study also revealed alterations in antioxidant gene expression (Sod2 and Cat) and modulation of m6A-related genes (Ythdf1-3 and Foxo3) and their proteins. Through MeRIP-qPCR analysis, we identified increased m6A modifications in Scarb1 and Star genes following BPH exposure. In vitro experiments with primary Leydig cells confirmed that BPH enhanced oxidative stress and diminished testosterone production, which were partially mitigated by antioxidant vitamin E supplementation and Ythdf3 knockdown. Meanwhile, simultaneous administration of BPH and vitamin E to primary Leydig cells partially counteracted BPH-induced alterations in the Ythdf3 expression. Our findings underscore a novel mechanism by which BPH disrupts Leydig cell function through the oxidative stress-m6A modification-autophagy pathway, raising concerns about its potential reproductive toxicity.
Assuntos
Células Intersticiais do Testículo , Estresse Oxidativo , Fenóis , Testosterona , Animais , Masculino , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Testosterona/sangue , Fenóis/toxicidade , Reprodução/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Ratos Sprague-Dawley , Receptores Depuradores Classe B/genética , Testículo/efeitos dos fármacos , Testículo/patologia , Testículo/metabolismo , Relação Dose-Resposta a DrogaRESUMO
Bisphenol A (BPA) and its analogues are widely used industrial chemicals. Placental 3ß-hydroxysteroid dehydrogenases (3ß-HSDs) catalyse the conversion of pregnenolone to progesterone. However, the potency of BPA analogues in inhibiting 3ß-HSDs activity remains unclear. We investigated the inhibitory effect of 10 BPA analogues on 3ß-HSDs activity using an in vitro assay and performed the structure-activity relationship and in silico docking analysis. BPH was the most potent inhibitor of human 3ß-HSD1, with an IC50 value of 0.95 µM. BPFL, BPG, DABPA, BPAP, BPZ, DMBPA, and BPB also inhibited human 3ß-HSD1 activity, albeit with lower potency. BPG was the most potent inhibitor of rat 3ß-HSD4, with an IC50 value of 1.14 µM. BPAP, BPFL, BPG, BPH, BPZ, DABPA, and DMBPA are mixed inhibitors of human 3ß-HSD1 and they significantly inhibited human JAr cells to secrete progesterone. The LogP values were inversely correlated with the inhibitory effects. Docking analysis showed that most BPA analogues bind to steroid-binding site of both 3ß-HSDs. A pharmacophore containing hydrogen bond donor and hydrophobic region was generated for predicting the inhibitory strength of BPA analogues. In conclusion, this study demonstrates that some BPA analogues are potent inhibitors of 3ß-HSDs and lipophilicity determines the inhibitory potency.
Assuntos
Compostos Benzidrílicos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Fenóis , Placenta , Humanos , Fenóis/farmacologia , Fenóis/química , Fenóis/metabolismo , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/química , Compostos Benzidrílicos/metabolismo , Ratos , Animais , Placenta/enzimologia , Placenta/metabolismo , Feminino , Relação Estrutura-Atividade , Gravidez , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , 3-Hidroxiesteroide Desidrogenases/metabolismo , 3-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , 3-Hidroxiesteroide Desidrogenases/química , Sítios de Ligação , Progesterona/metabolismo , Progesterona/química , Progesterona/análogos & derivadosRESUMO
Dithiocarbamates have been widely used in various industrial applications, such as insecticides (ferbam) or drug (disulfiram). This study explored the inhibitory effects of dithiocarbamates on human and rat gonadal 3ß-hydroxysteroid dehydrogenases (3ß-HSD) and investigated the structure-activity relationship and mechanistic insights. The inhibitory activity of six dithiocarbamates and thiourea on the conversion of pregnenolone to progesterone was evaluated using human KGN cell and rat testicular microsomes, with subsequent progesterone measurement using HPLC-MS/MS. The study found that among the tested compounds disulfiram, ferbam, and thiram exhibited significant inhibitory activity against human 3ß-HSD2 and rat 3ß-HSD1, with ferbam demonstrating the highest potency. The mode of action for these compounds was characterized, showing mixed inhibition for human 3ß-HSD2 and mixed/noncompetitive inhibition for rat 3ß-HSD1. Additionally, it was observed that dithiothreitol dose-dependently reversed the inhibitory effects of dithiocarbamates on both human and rat gonadal 3ß-HSD enzymes. The study also delved into the penetration of these dithiocarbamates through the human KGN cell membrane and their impact on progesterone production, highlighting their potency in inhibiting human 3ß-HSD2. Furthermore, bivariate correlation analysis revealed a positive correlation of LogP (lipophilicity) with IC50 values for both enzymes. Docking analysis indicated that dithiocarbamates bind to NAD+ and steroid-binding sites, with some interactions with cysteine residues. In conclusion, this study provides valuable insights into the structure-activity relationship and mechanistic aspects of dithiocarbamates as inhibitors of human and rat gonadal 3ß-HSDs, suggesting that these compounds likely exert their inhibitory effects through binding to cysteine residues.
Assuntos
Fungicidas Industriais , Animais , Humanos , Fungicidas Industriais/toxicidade , Ratos , Masculino , Cisteína , Relação Estrutura-Atividade , Tiocarbamatos/farmacologia , Tiocarbamatos/química , Testículo/efeitos dos fármacos , Testículo/enzimologia , Simulação de Acoplamento Molecular , 3-Hidroxiesteroide Desidrogenases/metabolismo , Microssomos/efeitos dos fármacos , Microssomos/enzimologiaRESUMO
The use of salicylates as flavoring agents in food and beverages is common, but their potential to disrupt the endocrine system remains unclear. Human placental 3ß-hydroxysteroid dehydrogenase 1 (h3ß-HSD1) plays a role in progesterone synthesis and is the potential target. This study evaluated the inhibition of 13 salicylates on h3ß-HSD1, structure-activity relationship (SAR) and compared with rat placental homolog r3ß-HSD4. Salicylates inhibited h3ß-HSD1, depending on carbon chain number in the alcohol moiety and the IC50 values for hexyl, ethylhexyl, homomenthyl, and menthyl salicylates were 53.27, 15.78, 2.35, and 2.31 µM, as mixed inhibitors, respectively, while methyl to benzyl salicylates were ineffective at 100 µM. Interestingly, only hexyl salicylate inhibited r3ß-HSD4 with IC50 of 31.05 µM. Bivariate analysis revealed a negative correlation between IC50 and hydrophobicity (LogP), molecular weight, heavy atoms, and carbon number in the alcohol moiety against h3ß-HSD1. Docking analysis demonstrated that these salicylates bind to cofactor binding sites or between the steroid and cofactor binding sites. Additionally, 3D-QSAR showed distinct binding via hydrogen bond donors and hydrophobic regions. In conclusion, the inhibition of h3ß-HSD1 by salicylates appears to be dependent on factors such as LogP, molecular weight, heavy atoms, and carbon-chain length and there is species-dependent inhibition sensitivity.
Assuntos
Simulação de Acoplamento Molecular , Placenta , Relação Quantitativa Estrutura-Atividade , Salicilatos , Humanos , Animais , Ratos , Salicilatos/química , Salicilatos/farmacologia , Placenta/metabolismo , Placenta/enzimologia , Feminino , Aditivos Alimentares/farmacologia , Aditivos Alimentares/química , Aditivos Alimentares/metabolismo , Gravidez , 3-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , 3-Hidroxiesteroide Desidrogenases/metabolismo , 3-Hidroxiesteroide Desidrogenases/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Sítios de LigaçãoRESUMO
BACKGROUND AND PURPOSE: Prostate cancer remains a major public health burden worldwide. Polo like kinase 4 (PLK4) has emerged as a promising therapeutic target in prostate cancer due to its key roles in cell cycle regulation and tumour progression. This study aims to develop and characterize the novel curcumin analogue NL13 as a potential therapeutic agent and PLK4 inhibitor against prostate cancer. EXPERIMENTAL APPROACH: NL13 was synthesized and its effects were evaluated in prostate cancer cells and mouse xenograft models. Kinome screening and molecular modelling identified PLK4 as the primary target. Antiproliferative and proapoptotic mechanisms were explored via cell cycle, apoptosis, gene and protein analyses. KEY RESULTS: Compared with curcumin, NL13 exhibited much greater potency in inhibiting PC3 (IC50, 3.51 µM vs. 35.45 µM) and DU145 (IC50, 2.53 µM vs. 29.35 µM) prostate cancer cells viability and PLK4 kinase activity (2.32 µM vs. 246.88 µM). NL13 induced G2/M cell cycle arrest through CCNB1/CDK1 down-regulation and triggered apoptosis via caspase-9/caspase-3 cleavage. These effects were mediated by PLK4 inhibition, which led to the inactivation of the AKT signalling pathway. In mice, NL13 significantly inhibited tumour growth and modulated molecular markers consistent with in vitro findings, including decreased p-AKT and increased cleaved caspase-9/3. CONCLUSION AND IMPLICATIONS: NL13, a novel PLK4-targeted curcumin analogue, exerts promising anticancer properties against prostate cancer by disrupting the PLK4-AKT-CCNB1/CDK1 and apoptosis pathways. NL13 represents a promising new agent for prostate cancer therapy.
Assuntos
Antineoplásicos , Apoptose , Pontos de Checagem do Ciclo Celular , Curcumina , Neoplasias da Próstata , Proteínas Serina-Treonina Quinases , Masculino , Humanos , Apoptose/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Curcumina/farmacologia , Curcumina/análogos & derivados , Curcumina/síntese química , Curcumina/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Camundongos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Camundongos Nus , Proliferação de Células/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Camundongos Endogâmicos BALB CRESUMO
Parabens are commonly used preservatives in cosmetics, food, and pharmaceutical products. The objective of this study was to examine the effect of nine parabens on human and rat 17ß-hydroxysteroid dehydrogenase 1 (17ß-HSD1) in human placental and rat ovarian cytosols, as well as on estradiol synthesis in BeWo cells. The results showed that the IC50 values for these compounds varied from methylparaben with the weakest inhibition (106.42⯵M) to hexylparaben with the strongest inhibition (2.05⯵M) on human 17ß-HSD1. Mode action analysis revealed that these compounds acted as mixed inhibitors. For rats, the IC50 values ranged from the weakest inhibition for methylparaben (no inhibition at 100 µM) to the most potent inhibition for hexylparaben (0.87⯵M), and they functioned as mixed inhibitors. Docking analysis indicated that parabens bind to the region bridging the NADPH and steroid binding sites of human 17ß-HSD1 and the NADPH binding site of rat 17ß-HSD1. Bivariate correlation analysis demonstrated negative correlations between LogP, molecular weight, heavy atoms, and apolar desolvation energy, and the IC50 values of these compounds. In conclusion, this study identified the inhibitory effects of parabens and their binding mechanisms on human and rat 17ß-HSD1, as well as their impact on hormone synthesis.
Assuntos
Estradiol , Simulação de Acoplamento Molecular , Parabenos , Placenta , Parabenos/toxicidade , Animais , Humanos , Ratos , Feminino , Placenta/efeitos dos fármacos , Placenta/metabolismo , Placenta/enzimologia , 17-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , 17-Hidroxiesteroide Desidrogenases/metabolismo , Gravidez , Conservantes Farmacêuticos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ovário/enzimologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Sítios de Ligação , Estradiol Desidrogenases/antagonistas & inibidores , Estradiol Desidrogenases/metabolismoRESUMO
Triclosan is a potent antibacterial compound widely used in everyday products. Whether triclosan affects Leydig cell function in adult male rats remains unknown. In this study, 0, 50, 100, or 200 mg/kg/day triclosan was gavaged to Sprague-Dawley male rats from 56 to 63 days postpartum. Triclosan significantly reduced serum testosterone levels at ≥ 50 mg/kg/day via downregulating the expression of Leydig cell gene Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, and Hsd17b3 and regulatory transcription factor Nr3c2 at 100-200 mg/kg. Further analysis showed that triclosan markedly increased autophagy as shown by increasing LC3II and BECN1 and decreasing SQSTM1. The mRNA m6A modification analysis revealed that triclosan significantly downregulated Fto expression at 200 mg/kg while upregulating Ythdf1 expression at 100 and 200 mg/kg, leading to methylation of Becn1 mRNA as shown by MeRIP assay. Triclosan significantly inhibited testosterone output in rat R2C Leydig cells at ≥ 5 µM via downregulating Fto and upregulating Ythdf1. SiRNA Ythdf1 knockdown can reverse triclosan-mediated mitophagy in R2C cells, thereby reversing the reduction of testosterone output. In summary, triclosan caused Becn1 m6A methylation by downregulating Fto and upregulating Ythdf1, which accelerated Becn1 translation, thus leading to the occurrence of autophagy and the decrease of testosterone biosynthesis.
Assuntos
Autofagia , Células Intersticiais do Testículo , Ratos Sprague-Dawley , Testosterona , Triclosan , Animais , Masculino , Autofagia/efeitos dos fármacos , Testosterona/sangue , Testosterona/biossíntese , Ratos , Triclosan/toxicidade , Triclosan/farmacologia , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , MetilaçãoRESUMO
Curcumin has been shown to have antitumor properties, but its low potency and bioavailability has limited its clinical application. We designed a novel curcuminoid, [1-propyl-3,5-bis(2-bromobenzylidene)-4-piperidinone] (PBPD), which has higher antitumor strength and improves bioavailability. Cell counting kit-8 was used to detect cell activity. Transwell assay was used to detect cell invasion and migration ability. Western blot and quantitative polymerase chain reaction were used to detect protein levels and their messenger RNA expression. Immunofluorescence was used to detect the protein location. PBPD significantly inhibited the proliferation of cervical cancer cells, with an IC50 value of 4.16 µM for Hela cells and 3.78 µM for SiHa cells, leading to the induction of cuproptosis. Transcriptome sequencing analysis revealed that PBPD significantly inhibited the Notch1/Recombination Signal Binding Protein for Immunoglobulin kappa J Region (RBP-J) and nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathways while upregulating ferredoxin 1 (FDX1) expression. Knockdown of Notch1 or RBP-J significantly inhibited NRF2 expression and upregulated FDX1 expression, leading to the inhibition of nicotinamide adenine dinucleotide phosphate activity and the induction of oxidative stress, which in turn activated endoplasmic reticulum stress and induced cell death. The overexpression of Notch1 or RBP-J resulted in the enrichment of RBP-J within the NRF2 promoter region, thereby stimulating NRF2 transcription. NRF2 knockdown resulted in increase in FDX1 expression, leading to cuproptosis. In addition, PBPD inhibited the acidification of tumor niche and reduced cell metabolism to inhibit cervical cancer cell invasion and migration. In conclusion, PBPD significantly inhibits the proliferation, invasion, and migration of cervical cancer cells and may be a novel potential drug candidate for treatment of cervical cancer.
Assuntos
Proliferação de Células , Estresse do Retículo Endoplasmático , Fator 2 Relacionado a NF-E2 , Receptor Notch1 , Transdução de Sinais , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Receptor Notch1/metabolismo , Receptor Notch1/genética , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Curcumina/farmacologia , Curcumina/análogos & derivados , Linhagem Celular Tumoral , Animais , Células HeLa , CamundongosRESUMO
Organotins have been widely used in various industrial applications. This study investigated the structure-activity relationship as inhibitors of human, pig, and rat gonadal 3ß-hydroxysteroid dehydrogenases (3ß-HSD). Human KGN cell, pig, and rat testis microsomes were utilized to assess the inhibitory effects of 18 organotins on the conversion of pregnenolone to progesterone. Among them, diphenyltin, triethyltin, and triphenyltin exhibited significant inhibitory activity against human 3ß-HSD2 with IC50 values of 114.79, 106.98, and 5.40 µM, respectively. For pig 3ß-HSD, dipropyltin, diphenyltin, triethyltin, tributyltin, and triphenyltin demonstrated inhibitory effects with IC50 values of 172.00, 100.19, 87.00, 5.75, and 1.65 µM, respectively. Similarly, for rat 3ß-HSD1, dipropyltin, diphenyltin, triethyltin, tributyltin, and triphenyltin displayed inhibitory activity with IC50 values of 81.35, 43.56, 55.55, 4.09, and 0.035 µM, respectively. They were mixed inhibitors of pig and rat 3ß-HSD, while triphenyltin was identified as a competitive inhibitor of human 3ß-HSD2. The mechanism underlying the inhibition of organotins on 3ß-HSD was explored, revealing that they may disrupt the enzyme activity by binding to cysteine residues in the catalytic sites. This proposition was supported by the observation that the addition of dithiothreitol reversed the inhibition caused by all organotins except for triethyltin, which was partially reversed. In conclusion, this study provides valuable insights into the structure-activity relationship of organotins as inhibitors of human, pig, and rat gonadal 3ß-HSD. The mechanistic investigation suggests that these compounds likely exert their inhibitory effects through binding to cysteine residues in the catalytic sites.
Assuntos
Inibidores Enzimáticos , Compostos Orgânicos de Estanho , Testículo , Animais , Humanos , Relação Estrutura-Atividade , Compostos Orgânicos de Estanho/farmacologia , Compostos Orgânicos de Estanho/química , Ratos , Masculino , Testículo/enzimologia , Testículo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Suínos , 3-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , 3-Hidroxiesteroide Desidrogenases/metabolismo , Simulação de Acoplamento Molecular , Progesterona/farmacologia , Progesterona/metabolismo , Microssomos/enzimologia , Microssomos/efeitos dos fármacos , Ratos Sprague-DawleyRESUMO
Per- and polyfluoroalkyl substances (PFAS) are widely used synthetic chemicals that persist in the environment and bioaccumulate in animals and humans. There is growing evidence that PFAS exposure adversely impacts neurodevelopment and neurological health. Steroid 5α-reductase 1 (SRD5A1) plays a key role in neurosteroidogenesis by catalyzing the conversion of testosterone or pregnenolone to neuroactive steroids, which influence neural development, cognition, mood, and behavior. This study investigated the inhibitory strength and binding interactions of 18 PFAS on human and rat SRD5A1 activity using enzyme assays, molecular docking, and structure-activity relationship analysis. Results revealed that C9-C14 PFAS carboxylic acid at 100 µM significantly inhibited human SRD5A1, with IC50 values ranged from 10.99 µM (C11) to 105.01 µM (C14), and only one PFAS sulfonic acid (C8S) significantly inhibited human SRD5A1 activity, with IC50 value of 8.15 µM. For rat SRD5A1, C9-C14 PFAS inhibited rat SRD5A1, showing the similar trend, depending on carbon number of the carbon chain. PFAS inhibit human and rat SRD5A1 in a carbon chain length-dependent manner, with optimal inhibition around C11. Kinetic studies indicated PFAS acted through mixed inhibition. Molecular docking revealed PFAS bind to the domain between NADPH and testosterone binding site of both SRD5A1 enzymes. Inhibitory potency correlated with physicochemical properties like carbon number of the carbon chain. These findings suggest PFAS may disrupt neurosteroid synthesis and provide insight into structure-based inhibition of SRD5A1.
Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase , Simulação de Acoplamento Molecular , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/química , Animais , Humanos , Ratos , Relação Estrutura-Atividade , Proteínas de Membrana/metabolismo , Fluorocarbonos/química , Fluorocarbonos/metabolismo , Fluorocarbonos/farmacologia , Ligação Proteica , Carbono/química , Carbono/metabolismo , Sítios de LigaçãoRESUMO
Deoxynivalenol (DON) is a common food contaminant that can impair male reproductive function. This study investigated the effects and mechanisms of DON exposure on progenitor Leydig cell (PLC) development in prepubertal male rats. Rats were orally administrated DON (0-4 mg/kg) from postnatal days 21-28. DON increased PLC proliferation but inhibited PLC maturation and function, including reducing testosterone levels and downregulating biomarkers like HSD11B1 and INSL3 at ≥2 mg/kg. DON also stimulated mitochondrial fission via upregulating DRP1 and FIS1 protein levels and increased oxidative stress by reducing antioxidant capacity (including NRF2, SOD1, SOD2, and CAT) in PLCs in vivo. In vitro, DON (2-4 µM) inhibited PLC androgen biosynthesis, increased reactive oxygen species production and protein levels of DRP1, FIS1, MFF, and pAMPK, decreased mitochondrial membrane potential and MFN1 protein levels, and caused mitochondrial fragmentation. The mitochondrial fission inhibitor mdivi-1 attenuated DON-induced impairments in PLCs. DON inhibited PLC steroidogenesis, increased oxidative stress, perturbed mitochondrial homeostasis, and impaired maturation. In conclusion, DON disrupts PLC development in prepubertal rats by stimulating mitochondrial fission.
Assuntos
Células Intersticiais do Testículo , Mitocôndrias , Dinâmica Mitocondrial , Estresse Oxidativo , Ratos Sprague-Dawley , Tricotecenos , Animais , Masculino , Dinâmica Mitocondrial/efeitos dos fármacos , Ratos , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/citologia , Tricotecenos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Testosterona/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/citologia , Humanos , Dinaminas/metabolismo , Dinaminas/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacosRESUMO
Prenatal exposure to diethylhexyl phthalate (DEHP) has been linked with a decline in testosterone levels in adult male rats, but the underlying mechanism remains unclear. We investigated the potential epigenetic regulation, particularly focusing on N6-methyladenosine (m6A) modification, as a possible mechanism. Dams were gavaged with DEHP (0, 10, 100, and 750â¯mg/kg/day) from gestational day 14 to day 21. The male offspring were examined at the age of 56 days. Prenatal DEHP administration at 750â¯mg/kg/day caused a decline in testosterone concentrations, an elevation in follicle-stimulating hormone, a downregulated expression of CYP11A1 HSD3B2, without affecting Leydig cell numbers. Interestingly, Methyltransferase Like 4 (METTL4), an m6A methyltransferase, was downregulated, while there were no changes in METTL3 and METTL14. Moreover, CYP11A1 showed m6A reduction in response to prenatal DEHP exposure. Additionally, METTL4 expression increased postnatally, peaking in adulthood. Knockdown of METTL4 resulted in the downregulation of CYP11A1 and HSD3B2 and an increase in SCARB1 expression. Furthermore, the increase in autophagy protection in adult Leydig cells induced by prenatal DEHP exposure was not affected by 3-methyladenosine (3MA) treatment, indicating a potential protective role of autophagy in response to DEHP exposure. In conclusion, prenatal DEHP exposure reduces testosterone by downregulating CYP11A1 and HSD3B2 via m6A epigenetic regulation and induction of autophagy protection in adult Leydig cells as a response to DEHP exposure.
Assuntos
Dietilexilftalato , Regulação para Baixo , Epigênese Genética , Células Intersticiais do Testículo , Metiltransferases , Efeitos Tardios da Exposição Pré-Natal , Testosterona , Animais , Feminino , Masculino , Gravidez , Ratos , Adenosina/análogos & derivados , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Dietilexilftalato/toxicidade , Dietilexilftalato/análogos & derivados , Regulação para Baixo/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Células Intersticiais do Testículo/efeitos dos fármacos , Metiltransferases/genética , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos Sprague-Dawley , Testosterona/sangueRESUMO
Benzophenone chemicals (BPs) have been developed to prevent the adverse effects of UV radiation and they are widely contaminated. 11ß-Hydroxysteroid dehydrogenase 1 (11ß-HSD1) catalyze the conversion of inactive glucocorticoid to active glucocorticoid, playing critical role in many physiological function. However, the direct effect of BPs on human, pig, rat, and mouse 11ß-HSD1 remains unclear. In this study, we screened the inhibitory strength of 12 BPs on 4 species, and performed the structure-activity relationship (SAR) and in silico docking analysis. The inhibitory potency of BPs was: for human 11ß-HSD1, BP6 (IC50 = 18.76 µM) > BP8 (40.84 µM) > BP (88.89 µM) > other BPs; for pig 11ß-HSD1, BP8 (45.57 µM) > BP6 (59.44 µM) > BP2 (65.12 µM) > BP (135.56 µM) > other BPs; for rat 11ß-HSD1, BP7 (67.17 µM) > BP (68.83 µM) > BP8 (133.04 µM) > other BPs; and for mouse 11ß-HSD1, BP8 (41.41 µM) > BP (50.61 µM) > other BPs. These BP chemicals were mixed/competitive inhibitors of these 11ß-HSD1 enzymes. The 2,2'-dihydroxy substitutions in two benzene rings play a key role in enhancing the effectiveness of inhibiting 11ß-HSD1, possibly via increasing hydrogen bond interactions. Docking analysis shows that these BPs bind to NADPH/glucocorticoid binding sites and forms hydrogen bonds with catalytic residues Ser and/or Tyr. In conclusion, this study demonstrates that BP chemicals can inhibit 11ß-HSD1 from 4 species, and there are subtle species-dependent difference in the inhibitory strength and structural variations of BPs.
Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Benzofenonas , Simulação de Acoplamento Molecular , Animais , Benzofenonas/química , Benzofenonas/farmacologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/química , Humanos , Relação Estrutura-Atividade , Ratos , Camundongos , Suínos , Protetores Solares/química , Protetores Solares/farmacologia , Protetores Solares/toxicidade , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Especificidade da Espécie , Raios UltravioletaRESUMO
The objective of this study was to examine the effect of 11 organochlorine pesticides on human and rat 17ß-Hydroxysteroid dehydrogenase 1 (17ß-HSD1) in human placental and rat ovarian microsome and on estradiol production in BeWo cells. The results showed that the IC50 values for endosulfan, fenhexamid, chlordecone, and rhothane on human 17ß-HSD1 were 21.37, 73.25, 92.80, and 117.69⯵M. Kinetic analysis revealed that endosulfan acts as a competitive inhibitor, fenhexamid as a mixed/competitive inhibitor, chlordecone and rhothane as a mixed/uncompetitive inhibitor. In BeWo cells, all insecticides except endosulfan significantly decreased estradiol production at 100⯵M. For rats, the IC50 values for dimethomorph, fenhexamid, and chlordecone were 11.98, 36.92, and 109.14⯵M. Dimethomorph acts as a mixed inhibitor, while fenhexamid acts as a mixed/competitive inhibitor. Docking analysis revealed that endosulfan and fenhexamid bind to the steroid-binding site of human 17ß-HSD1. On the other hand, chlordecone and rhothane binds to a different site other than the steroid and NADPH-binding site. Dimethomorph binds to the steroid/NADPH binding site, and fenhexamid binds to the steroid binding site of rat 17ß-HSD1. Bivariate correlation analysis showed a positive correlation between IC50 values and LogP for human 17ß-HSD1, while a slight negative correlation was observed between IC50 values and the number of HBA. ADMET analysis provided insights into the toxicokinetics and toxicity of organochlorine pesticides. In conclusion, this study identified the inhibitory effects of 3-4 organochlorine pesticides and binding mechanisms on human and rat 17ß-HSD1, as well as their impact on hormone production.
Assuntos
Hidrocarbonetos Clorados , Simulação de Acoplamento Molecular , Praguicidas , Animais , Humanos , Ratos , Hidrocarbonetos Clorados/química , Hidrocarbonetos Clorados/farmacologia , Relação Estrutura-Atividade , Feminino , Praguicidas/química , Praguicidas/metabolismo , 17-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , 17-Hidroxiesteroide Desidrogenases/metabolismo , 17-Hidroxiesteroide Desidrogenases/química , Gravidez , Placenta/metabolismo , Estradiol/metabolismo , Estradiol/química , Inseticidas/química , Inseticidas/farmacologiaRESUMO
Per- and polyfluoroalkyl (PFAS) substances are enduring industrial materials. 17ß-Hydroxysteroid dehydrogenase isoform 1 (17ß-HSD1) is an estrogen metabolizing enzyme, which transforms estrone into estradiol in human placenta and rat ovary. Whether PFAS inhibit 17ß-HSD1 and what the structure-activity relationship (SAR) remains unexplored. We screened 18 PFAS for inhibiting human and rat 17ß-HSD1 in microsomes and studied their SAR and mode of action(MOA). Of the 11 perfluorocarboxylic acids (PFCAs), C8-C14 PFCAs at a concentration of 100⯵M substantially inhibited human 17ß-HSD1, with order of C11 (half-maximal inhibition concentration, IC50, 8.94⯵M) > C10 (10.52⯵M) > C12 (14.90⯵M) > C13 (30.97⯵M) > C9 (43.20⯵M) > C14 (44.83⯵M) > C8 (73.38⯵M) > others. Of the 7 per- and poly-fluorosulfonic acids (PFSAs), the potency was C8S (IC50, 14.93⯵M) > C7S (80.70⯵M) > C6S (177.80⯵M) > others. Of the PFCAs, C8-C14 PFCAs at 100⯵M markedly reduced rat 17ß-HSD1 activity, with order of C11 (IC50, 9.11⯵M) > C12 (14.30⯵M) > C10 (18.24⯵M) > C13 (25.61⯵M) > C9 (67.96⯵M) > C8 (204.39⯵M) > others. Of the PFSAs, the potency was C8S (IC50, 37.19⯵M) > C7S (49.38⯵M) > others. In contrast to PFOS (C6S), the partially fluorinated compound 6:2 FTS with an equivalent number of carbon atoms demonstrated no inhibition of human and rat 17ß-HSD1 activity at a concentration of 100⯵M. The inhibition of human and rat enzymes by PFAS followed a V-shaped trend from C4 to C14, with a nadir at C11. Moreover, human 17ß-HSD1 was more sensitive than rat enzyme. PFAS inhibited human and rat 17ß-HSD1 in a mixed mode. Docking analysis revealed that they bind to the NADPH and steroid binding site of both 17ß-HSD1 enzymes. The 3D quantitative SAR (3D-QSAR) showed that hydrophobic region, hydrogen bond acceptor and donor are key factors in binding to 17ß-HSD1 active sites. In conclusion, PFAS exhibit inhibitory effects on human and rat 17ß-HSD1 depending on factors such as carbon chain length, degree of fluorination, and the presence of carboxylic acid or sulfonic acid groups, with a notable V-shaped shift observed at C11.
Assuntos
Fluorocarbonos , Relação Quantitativa Estrutura-Atividade , Gravidez , Feminino , Humanos , Animais , Ratos , Simulação de Acoplamento Molecular , 17-Hidroxiesteroide Desidrogenases/química , 17-Hidroxiesteroide Desidrogenases/metabolismo , Estrona , Carbono , Fluorocarbonos/toxicidadeRESUMO
Pentachlorophenol (PCP) is a widely used pesticide. However, whether PCP and its metabolite chloranil have endocrine-disrupting effects by inhibiting placental 3ß-hydroxysteroid dehydrogenase 1 (3ß-HSD1) remains unclear. The study used in vitro assays with human and rat placental microsomes to measure 3ß-HSD activity as well as human JAr cells to evaluate progesterone production. The results showed that PCP exhibited moderate inhibition of human 3ß-HSD1, with an IC50 value of 29.83⯵M and displayed mixed inhibition in terms of mode of action. Conversely, chloranil proved to be a potent inhibitor, demonstrating an IC50 value of 147â¯nM, and displaying a mixed mode of action. PCP significantly decreased progesterone production by JAr cells at 50⯵M, while chloranil markedly reduced progesterone production at ≥1⯵M. Interestingly, PCP and chloranil moderately inhibited rat placental homolog 3ß-HSD4, with IC50 values of 27.94 and 23.42⯵M, respectively. Dithiothreitol (DTT) alone significantly increased human 3ß-HSD1 activity. Chloranil not PCP mediated inhibition of human 3ß-HSD1 activity was completely reversed by DTT and that of rat 3ß-HSD4 was partially reversed by DTT. Docking analysis revealed that both PCP and chloranil can bind to the catalytic domain of 3ß-HSDs. The difference in the amino acid residue Cys83 in human 3ß-HSD1 may explain why chloranil is a potent inhibitor through its interaction with the cysteine residue of human 3ß-HSD1. In conclusion, PCP is metabolically activated to chloranil as a potent inhibitor of human 3ß-HSD1.