Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(19)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37830580

RESUMO

Zinc α2-glycoprotein (ZAG) has been implicated in fatty acid metabolism and utilization and is lower in obese and higher in cachexic adults compared to those of normal weight. Previous studies suggest that ZAG binds to the beta3-adrenergic receptor (ß3AR) to influence fatty acid metabolism in adipose tissue by regulating hormone sensitive lipase (HSL). The purpose of this study is to investigate the effects of a six-month weight loss (WL) or aerobic exercise (AEX) intervention on adipose tissue and skeletal muscle ZAG mRNA levels and protein expression, as well as the expression of ß3AR, and HSL. Abdominal adipose tissue (AB) and gluteal adipose tissue (Glut) and vastus lateralis muscle biopsies were performed before and after WL (n = 13) or AEX (n = 13). ZAG, HSL, and ß3AR expressions were determined by RT-PCR, and ZAG and HSL plasma levels by ELISA. Body weight decreased by 9.69% (p < 0.001) in WL and did not change with AEX. Maximal oxygen consumption (VO2max) increased by 7.1% (p < 0.005) after WL and by 16.69% (p < 0.001) after AEX. WL significantly decreased body weight with a reduction of percentage of fat, fat mass, fat-free mass (FFM). AEX decreased percent fat and increased VO2max, but did not change fat mass and FFM. Abdominal ZAG and HSL mRNA levels did not change significantly after WL or AEX. There were no changes in plasma ZAG, HSL and adipose tissue ß3AR mRNA levels after WL and AEX. ZAG, HSL and ß3AR mRNA expressions in adipose tissue are positively associated each other. Adipose tissue abdominal and gluteal HSL are negatively associated with HOMA-IR (Homeostatic Model Assessment for Insulin Resistance), and both ZAG and HSL adipose tissue are negatively associated with fasting glucose and the glucose area under the curve. Further work is needed to elucidate the role of ZAG and HSL in the propensity for weight gain and the ability of exercise to mitigate these responses.


Assuntos
Exercício Físico , Obesidade , Redução de Peso , Humanos , Peso Corporal , Exercício Físico/fisiologia , Ácidos Graxos , Glucose , Glicoproteínas , Obesidade/genética , Obesidade/terapia , RNA Mensageiro/genética , Zinco
2.
J Neurosci ; 40(23): 4609-4619, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32350039

RESUMO

Idebenone is a synthetic quinone that on reduction in cells can bypass mitochondrial Complex I defects by donating electrons to Complex III. The drug is used clinically to treat the Complex I disease Leber's hereditary optic neuropathy (LHON), but has been less successful in clinical trials for other neurodegenerative diseases. NAD(P)H:quinone oxidoreductase 1 (NQO1) appears to be the main intracellular enzyme catalyzing idebenone reduction. However, NQO1 is not universally expressed by cells of the brain. Using primary rat cortical cells pooled from both sexes, we tested the hypotheses that the level of endogenous NQO1 activity limits the ability of neurons, but not astrocytes, to use idebenone as an electron donor to support mitochondrial respiration. We then tested the prediction that NQO1 induction by pharmacological activation of the transcription factor nuclear erythroid 2-related factor 2 (Nrf2) enables idebenone to bypass Complex I in cells with poor NQO1 expression. We found that idebenone stimulated respiration by astrocytes but reduced the respiratory capacity of neurons. Importantly, idebenone supported mitochondrial oxygen consumption in the presence of a Complex I inhibitor in astrocytes but not neurons, and this ability was reversed by inhibiting NQO1. Conversely, recombinant NQO1 delivery to neurons prevented respiratory impairment and conferred Complex I bypass activity. Nrf2 activators failed to increase NQO1 in neurons, but carnosic acid induced NQO1 in COS-7 cells that expressed little endogenous enzyme. Carnosic acid-idebenone combination treatment promoted NQO1-dependent Complex I bypass activity in these cells. Thus, combination drug strategies targeting NQO1 may promote the repurposing of idebenone for additional disorders.SIGNIFICANCE STATEMENT Idebenone is used clinically to treat loss of visual acuity in Leber's hereditary optic neuropathy. Clinical trials for several additional diseases have failed. This study demonstrates a fundamental difference in the way idebenone affects mitochondrial respiration in cortical neurons compared with cortical astrocytes. Cortical neurons are unable to use idebenone as a direct mitochondrial electron donor due to NQO1 deficiency. Our results suggest that idebenone behaves as an NQO1-dependent prodrug, raising the possibility that lack of neuronal NQO1 activity has contributed to the limited efficacy of idebenone in neurodegenerative disease treatment. Combination therapy with drugs able to safely induce NQO1 in neurons, as well as other brain cell types, may be able to unlock the neuroprotective therapeutic potential of idebenone or related quinones.


Assuntos
Antioxidantes/farmacologia , Astrócitos/enzimologia , Respiração Celular/fisiologia , Mitocôndrias/enzimologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Ubiquinona/análogos & derivados , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Células COS , Respiração Celular/efeitos dos fármacos , Células Cultivadas , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Feminino , Masculino , Mitocôndrias/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ubiquinona/farmacologia
3.
Dev Cell ; 40(6): 583-594.e6, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28350990

RESUMO

Mitochondrial fission mediated by the GTPase dynamin-related protein 1 (Drp1) is an attractive drug target in numerous maladies that range from heart disease to neurodegenerative disorders. The compound mdivi-1 is widely reported to inhibit Drp1-dependent fission, elongate mitochondria, and mitigate brain injury. Here, we show that mdivi-1 reversibly inhibits mitochondrial complex I-dependent O2 consumption and reverse electron transfer-mediated reactive oxygen species (ROS) production at concentrations (e.g., 50 µM) used to target mitochondrial fission. Respiratory inhibition is rescued by bypassing complex I using yeast NADH dehydrogenase Ndi1. Unexpectedly, respiratory impairment by mdivi-1 occurs without mitochondrial elongation, is not mimicked by Drp1 deletion, and is observed in Drp1-deficient fibroblasts. In addition, mdivi-1 poorly inhibits recombinant Drp1 GTPase activity (Ki > 1.2 mM). Overall, these results suggest that mdivi-1 is not a specific Drp1 inhibitor. The ability of mdivi-1 to reversibly inhibit complex I and modify mitochondrial ROS production may contribute to effects observed in disease models.


Assuntos
Dinaminas/antagonistas & inibidores , Complexo I de Transporte de Elétrons/antagonistas & inibidores , GTP Fosfo-Hidrolases/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Quinazolinonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Células COS , Respiração Celular/efeitos dos fármacos , Chlorocebus aethiops , Dinaminas/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , GTP Fosfo-Hidrolases/metabolismo , Humanos , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , NAD/metabolismo , Neurônios/metabolismo , Oxirredução/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Ratos Sprague-Dawley , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Mol Biol Cell ; 27(2): 349-59, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26564796

RESUMO

Ubiquitin- and proteasome-dependent outer mitochondrial membrane (OMM)-associated degradation (OMMAD) is critical for mitochondrial and cellular homeostasis. However, the scope and molecular mechanisms of the OMMAD pathways are still not well understood. We report that the OMM-associated E3 ubiquitin ligase MARCH5 controls dynamin-related protein 1 (Drp1)-dependent mitochondrial fission and cell sensitivity to stress-induced apoptosis. MARCH5 knockout selectively inhibited ubiquitination and proteasomal degradation of MiD49, a mitochondrial receptor of Drp1, and consequently led to mitochondrial fragmentation. Mitochondrial fragmentation in MARCH5(-/-) cells was not associated with inhibition of mitochondrial fusion or bioenergetic defects, supporting the possibility that MARCH5 is a negative regulator of mitochondrial fission. Both MARCH5 re-expression and MiD49 knockout in MARCH5(-/-) cells reversed mitochondrial fragmentation and reduced sensitivity to stress-induced apoptosis. These findings and data showing MARCH5-dependent degradation of MiD49 upon stress support the possibility that MARCH5 regulation of MiD49 is a novel mechanism controlling mitochondrial fission and, consequently, the cellular response to stress.


Assuntos
Proteínas de Membrana/metabolismo , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Apoptose/fisiologia , Dinaminas , GTP Fosfo-Hidrolases/metabolismo , Células HCT116 , Células HeLa , Homeostase , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Estresse Fisiológico/fisiologia , Ubiquitinação
5.
Free Radic Biol Med ; 86: 250-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26057935

RESUMO

MitoSOX Red is a fluorescent probe used for the detection of mitochondrial reactive oxygen species by live cell imaging. The lipophilic, positively charged triphenylphosphonium moiety within MitoSOX concentrates the superoxide-sensitive dihydroethidium conjugate within the mitochondrial matrix. Here we investigated whether common MitoSOX imaging protocols influence mitochondrial bioenergetic function in primary rat cortical neurons and microglial cell lines. MitoSOX dose-dependently uncoupled neuronal respiration, whether present continuously in the assay medium or washed following a ten minute loading protocol. Concentrations of 5-10µM MitoSOX caused severe loss of ATP synthesis-linked respiration. Redistribution of MitoSOX to the cytoplasm and nucleus occurred concomitant to mitochondrial uncoupling. MitoSOX also dose-dependently decreased the maximal respiration rate and this impairment could not be rescued by delivery of a complex IV specific substrate, revealing complex IV inhibition. As in neurons, loading microglial cells with MitoSOX at low micromolar concentrations resulted in uncoupled mitochondria with reduced respiratory capacity whereas submicromolar MitoSOX had no adverse effects. The MitoSOX parent compound dihydroethidium also caused mitochondrial uncoupling and respiratory inhibition at low micromolar concentrations. However, these effects were abrogated by pre-incubating dihydroethidium with cation exchange beads to remove positively charged oxidation products, which would otherwise by sequestered by polarized mitochondria. Collectively, our results suggest that the matrix accumulation of MitoSOX or dihydroethidium oxidation products causes mitochondrial uncoupling and inhibition of complex IV. Because MitoSOX is inherently capable of causing severe mitochondrial dysfunction with the potential to alter superoxide production, its use therefore requires careful optimization in imaging protocols.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Mitocôndrias/metabolismo , Neurônios/metabolismo , Fenantridinas/farmacologia , Desacopladores/farmacologia , Difosfato de Adenosina/farmacologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Consumo de Oxigênio , Ratos
6.
Methods Enzymol ; 547: 225-50, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25416361

RESUMO

Mitochondrial reactive oxygen species (ROS) are implicated in signal transduction, inflammation, neurodegenerative disorders, and normal aging. Net ROS release by isolated brain mitochondria derived from a mixture of neurons and glia is readily quantified using fluorescent dyes. Measuring intracellular ROS in intact neurons or glia and assigning the origin to mitochondria are far more difficult. In recent years, the proton-motive force crucial to mitochondrial function has been exploited to target a variety of compounds to the highly negative mitochondrial matrix using the lipophilic triphenylphosphonium cation (TPP(+)) as a "delivery" conjugate. Among these, MitoSOX Red, also called mito-hydroethidine or mito-dihydroethidium, is prevalently used for mitochondrial ROS estimation. Although the TPP(+) moiety of MitoSOX enables the manyfold accumulation of ROS-sensitive hydroethidine in the mitochondrial matrix, the membrane potential sensitivity conferred by TPP(+) creates a daunting set of challenges not often considered in the application of this dye. This chapter provides recommendations and cautionary notes on the use of potentiometric fluorescent indicators for the approximation of mitochondrial ROS in live neurons, with principles that can be extrapolated to nonneuronal cell types. It is concluded that mitochondrial membrane potential changes render accurate estimation of mitochondrial ROS using MitoSOX difficult to impossible. Consequently, knowledge of mitochondrial membrane potential is essential to the application of potentiometric fluorophores for the measurement of intramitochondrial ROS.


Assuntos
Mitocôndrias/metabolismo , Fenantridinas/análise , Potenciometria/métodos , Espécies Reativas de Oxigênio/análise , Animais , Etídio/análogos & derivados , Etídio/análise , Etídio/química , Etídio/metabolismo , Fluorescência , Corantes Fluorescentes/metabolismo , Potencial da Membrana Mitocondrial , Neurônios/metabolismo , Fenantridinas/química , Fenantridinas/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA