Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 814: 152774, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34986423

RESUMO

Air pollution is a major environmental health challenge in megacities, and as such a Comprehensive Action Plan (CAP) was issued in 2017 for Beijing, the capital city of China. Here we investigated the size-segregated airborne particles collected after the implementation of the CAP, intending to understand the change of oxidative potential and water-soluble heavy metal (WSHM) levels in 'haze' and 'non-haze' days. The DNA damage and the levels of WSHM were analyzed by Plasmid Scission Assay (PSA) and High-Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS) techniques. The PM mass concentration was higher in the fine particle size (0.43-2.1 µm) during haze days, except for the samples affected by mineral dust. The particle-induced DNA damage caused by fine sized particles (0.43-2.1 µm) exceeded that caused by the coarse sized particles (4.7-10 µm). The DNA damage from haze day particles significantly exceeded those collected on non-haze days. Prior to the instigation of the CAP, the highest value of DNA damage decreased, and DNA damage was seen in the finer size (0.43-1.1 µm). The Pearson correlation coefficient between the concentrations of water-soluble Pb, Cr, Cd and Zn were positively correlated with DNA damage, suggesting that these WSHM had significant oxidative potential. The mass concentrations of water-soluble trace elements (WSTE) and individual heavy metals were enriched in the finer particles between 0.43 µm to 1.1 µm, implying that smaller sized particles posed higher health risks. In contrast, the significant reduction in the mass concentration of water-soluble Cd and Zn, and the decrease of the maximum and average values of DNA damage after the CAP, demonstrated its effectiveness in restricting coal-burning emissions. These results have demonstrated that the Beijing CAP policy has been successful in reducing the toxicity of 'respirable' ambient particles.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Estresse Oxidativo , Tamanho da Partícula , Material Particulado/análise , Água
2.
Sci Total Environ ; 806(Pt 3): 151286, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34743816

RESUMO

COVID-19 has escalated into one of the most serious crises in the 21st Century. Given the rapid spread of SARS-CoV-2 and its high mortality rate, here we investigate the impact and relationship of airborne PM2.5 to COVID-19 mortality. Previous studies have indicated that PM2.5 has a positive relationship with the spread of COVID-19. To gain insights into the delayed effect of PM2.5 concentration (µgm-3) on mortality, we focused on the role of PM2.5 in Wuhan City in China and COVID-19 during the period December 27, 2019 to April 7, 2020. We also considered the possible impact of various meteorological factors such as temperature, precipitation, wind speed, atmospheric pressure and precipitation on pollutant levels. The results from the Pearson's correlation coefficient analyses reveal that the population exposed to higher levels of PM2.5 pollution are susceptible to COVID-19 mortality with a lag time of >18 days. By establishing a generalized additive model, the delayed effect of PM2.5 on the death toll of COVID-19 was verified. A negative correction was identified between temperature and number of COVID-19 deaths, whereas atmospheric pressure exhibits a positive correlation with deaths, both with a significant lag effect. The results from our study suggest that these epidemiological relationships may contribute to the understanding of the COVID-19 pandemic and provide insights for public health strategies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , China/epidemiologia , Humanos , Pandemias , Material Particulado/análise , Material Particulado/toxicidade , SARS-CoV-2
3.
Gondwana Res ; 93: 243-251, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33584115

RESUMO

COVID-19 (Corona Virus Disease 2019) is a severe respiratory syndrome currently causing a human global pandemic. The original virus, along with newer variants, is highly transmissible. Aerosols are a multiphase system consisting of the atmosphere with suspended solid and liquid particles, which can carry toxic and harmful substances; especially the liquid components. The degree to which aerosols can carry the virus and cause COVID-19 disease is of significant research importance. In this study, we have discussed aerosol transmission as the pathway of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), and the aerosol pollution reduction as a consequence of the COVID-19 lockdown. The aerosol transmission routes of the SARS-CoV-2 can be further subdivided into proximal human-exhaled aerosol transmission and potentially more distal ambient aerosol transmission. The human-exhaled aerosol transmission is a direct dispersion of the SARS-CoV-2. The ambient aerosol transmission is an indirect dispersion of the SARS-CoV-2 in which the aerosol acts as a carrier to spread the virus. This indirect dispersion can also stimulate the up-regulation of the expression of SARS-CoV-2 receptor ACE-2 (Angiotensin Converting Enzyme 2) and protease TMPRSS2 (Transmembrane Serine Protease 2), thereby increasing the incidence and mortality of COVID-19. From the aerosol quality data around the World, it can be seen that often atmospheric pollution has significantly decreased due to factors such as the reduction of traffic, industry, cooking and coal-burning emissions during the COVID-19 lockdown. The airborne transmission potential of SARS-CoV-2, the infectivity of the virus in ambient aerosols, and the reduction of aerosol pollution levels due to the lockdowns are crucial research subjects.

4.
Geosci Front ; 12(5): 101189, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38620834

RESUMO

Corona Virus Disease 2019 (COVID-19) caused by the novel coronavirus, results in an acute respiratory condition coronavirus 2 (SARS-CoV-2) and is highly infectious. The recent spread of this virus has caused a global pandemic. Currently, the transmission routes of SARS-CoV-2 are being established, especially the role of environmental transmission. Here we review the environmental transmission routes and persistence of SARS-CoV-2. Recent studies have established that the transmission of this virus may occur, amongst others, in the air, water, soil, cold-chain, biota, and surface contact. It has also been found that the survival potential of the SARS-CoV-2 virus is dependent on different environmental conditions and pollution. Potentially important pathways include aerosol and fecal matter. Particulate matter may also be a carrier for SARS-CoV-2. Since microscopic particles can be easily absorbed by humans, more attention must be focused on the dissemination of these particles. These considerations are required to evolve a theoretical platform for epidemic control and to minimize the global threat from future epidemics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA