Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37571015

RESUMO

Mitochondrial transcription termination factor (mTERF) is a DNA-binding protein that is encoded by nuclear genes, ultimately functions in mitochondria and can affect gene expression. By combining with mitochondrial nucleic acids, mTERF regulates the replication, transcription and translation of mitochondrial genes and plays an important role in the response of plants to abiotic stress. However, there are few studies on mTERF genes in tomato, which limits the in-depth study and utilization of mTERF family genes in tomato stress resistance regulation. In this study, a total of 28 mTERF gene family members were obtained through genome-wide mining and identification of the tomato mTERF gene family. Bioinformatics analysis showed that all members of the family contained environmental stress or hormone response elements. Gene expression pattern analysis showed that the selected genes had different responses to drought, high salt and low temperature stress. Most of the genes played key roles under drought and salt stress, and the response patterns were more similar. The VIGS method was used to silence the SLmTERF13 gene, which was significantly upregulated under drought and salt stress, and it was found that the resistance ability of silenced plants was decreased under both kinds of stress, indicating that the SLmTERF13 gene was involved in the regulation of the tomato abiotic stress response. These results provide important insights for further evolutionary studies and contribute to a better understanding of the role of the mTERF genes in tomato growth and development and abiotic stress response, which will ultimately play a role in future studies of tomato gene function.

2.
Materials (Basel) ; 15(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35683118

RESUMO

Porous (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (BCZT) piezoelectric ceramics with an oriented directional hole structure were prepared by using the tertbutyl alcohol (TBA)-based freeze-casting method. The influences of sintering temperatures on the microstructure and piezoelectric properties of porous BCZT ceramics were investigated both perpendicular and parallel to the freezing direction. With the increase in sintering temperatures and the porosities decreased from 58% to 42%, the compressive strength increased from 14.0 MPa to 25.0 MPa. In addition, the d33 value of 407 pC/N for the sample sintered at 1400 °C was obtained parallel to the freezing direction, which was 1.40 times that of the other direction.

3.
Opt Express ; 30(2): 3089-3100, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209435

RESUMO

We demonstrate the tunable Raman femtosecond solitons generation with a record-breaking power of 1.2 W at 2.3 µm and an ever-reported highest Raman soliton energy conversion efficiency of 99% via precise seed-pulse management in the thulium-doped single-mode fiber amplifier. We find that the central wavelength and the chirp of the incident pulses could dramatically affect the red-shifted soliton energy, locations, conversion efficiency, and the threshold power in fundamental Raman soliton generation. For the first time, we experimentally illustrated how the seed pulse with Kelly sidebands could affect the Raman solitons generation in this amplifier, and obtained the detailed regularity between the parameters of incident pulses and the properties of the generated solitons. This work provides useful guidance for Raman soliton-based high-power mid-infrared femtosecond laser fabrication.

4.
Opt Lett ; 47(1): 34-37, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34951876

RESUMO

We demonstrate a thulium-doped mode-locked fiber laser with ultra-broadband wavelength tunability for micro-strain sensing based on the multimode interference (MMI) effect in single-mode-multimode-single-mode (SMS) fiber configuration. The homemade SMS device with high performance is fusion spliced in the laser cavity, and the developed dispersion precisely managed the all-fiber structured mode-locked picosecond laser with a record-breaking wavelength tuning range from 1976 to 1916 nm while exerting axial strain on this SMS device. We experimentally explored the regularity between the strain and the central-wavelength shift of the mode-locked pulse, and for the first time to the best of the authors' knowledge, achieved the precise in-line axial strain measurement from 0 to 5385 µÉ› by using the tunable ultrafast-laser-based sensor, and sensitivity is up to -11.5 pm/µÉ›. With high compactness and durability, this sensor has advantages in real-time dynamic measurement over other passive devices, thus will undoubtedly find various application scenarios.

5.
ACS Chem Neurosci ; 11(19): 3025-3035, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32915538

RESUMO

Amyloid transthyretin (ATTR) amyloidosis is a widespread and fatal systemic amyloidosis characterized by the misfolding and amyloid aggregation of transthyretin (TTR). Studies suggest that dissociation of the TTR tetramer is the key step for its misfolding. Because of the importance of tetramer dissociation on ATTR amyloidosis, many TTR stabilizers have been discovered to stabilize the tetramer structure. This paper describes the application conventional molecular dynamics and metadynamics simulations to investigate the binding and unbinding mechanisms of two TTR stabilizers, including AG10 and tafamidis. AG10 has been granted an orphan drug designation by the U.S. Food and Drug Administration (FDA), and tafamidis was the first FDA-approved treatment for ATTR cardiomyopathy. The conventional molecular dynamics simulations reveal that both AG10 and tafamidis can stabilize the TTR tetramer through different mechanisms. AG10 stabilizes TTR tetramer by forming H-bonds with S117 to mimic the protective effect of T119M. Tafamidis stabilizes the tetramer by forming H-bond with S52 in the flexible CD loop to increase its structural stability. Despite the strong binding affinity of tafamidis, the free-energy surface constructed from metadynamics simulation suggests that tafamidis unbinds more readily than AG10 with lower free-energy barriers between the binding state and other intermediates. Finally, by performing pharmacophore analysis, we found two common important moieties of the studied compounds for their binding on the pockets, which can provide valuable guidance for future lead compounds' optimization in designing drugs for ATTR amyloidosis.


Assuntos
Neuropatias Amiloides Familiares , Pré-Albumina , Benzoxazóis/farmacologia , Humanos , Simulação de Dinâmica Molecular
6.
Materials (Basel) ; 12(22)2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31744083

RESUMO

Material Point Method (MPM) mesoscale simulation was used to study the constitutive relation of a polymer bonded explosive (PBX) consisting of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and a fluorine polymer binder F2314. The stress-strain variations of the PBX were calculated for different temperatures and different porosities, and the results were found to be consistent with experimental observations. The stress-strain relations at different temperatures were used to develop the constitutive equation of the PBX by using numerical data fitting. Stress-strain data for different porosities were used to establish the constitutive equation by fitting the simulation data to an improved Hashion-Shtrikman model. The equation can be used to predict the shear modulus and bulk modulus of the PBX at different densities of the sample. The constitutive equations developed for TATB/F2314 PBX by MPM mesoscale simulation are important equations for the numerical simulations of the PBX at macroscale. The method presented in this study provides an alternative approach for studying the constitutive relations of PBX.

7.
Molecules ; 23(7)2018 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-29966325

RESUMO

A deactivation channel for laser-excited 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) was studied by semiclassical dynamics. Results indicate that the excited state resulting from an electronic transition from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular mrbital (LUMO) is deactivated via pyramidalization of the activated N atom in a nitro group, with a lifetime of 2.4 ps. An approximately 0.5-electron transfer from the aromatic ring to the activated nitro group led to a significant increase of the C⁻NO2 bond length, which suggests that C⁻NO2 bond breaking could be a trigger for an explosive reaction. The time-dependent density functional theory (TD-DFT) method was used to calculate the energies of the ground and S1 excited states for each configuration in the simulated trajectory. The S1←S0 energy gap at the instance of non-adiabatic decay was found to be 0.096 eV, suggesting that the decay geometry is close to the conical intersection.


Assuntos
Lasers , Teoria Quântica , Trinitrobenzenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA