Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 157: 683-700, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36521674

RESUMO

Infection remains the devastating complications associated with surgical fixation of bones fractured during trauma. In this study, we report a low-alloyed Zn-Mg-Ag that simultaneously has optimized strength degeneration profiles during degradation, outstanding antibacterial efficacy and osteogenic activity. Our results showed that Zn-0.05Mg-0.1Ag alloy had favorable mechanical properties (UTS: 247.8 ± 1.6 MPa, Elong.: 35 ± 2.2 %) and presented a better hold of mechanical integrity than pure Zn during 28 days corrosion, 2.6 % vs. 18.7 % reduction. After one-year of natural aging, the alloy still preserved an elongation of 24.07 ± 3.84 %. As verified by microbial cultures, Zn-0.05Mg-0.1Ag alloy demonstrated high antibacterial performance against Gram-positive and Gram-negative strains, as well as antibiotic-resistant strains (MRSA) in vitro and in vivo due to the synergistic antibacterial actions of Zn2+ and Ag+. Meanwhile, Zn-Mg-Ag alloy also exhibited enhanced viability, osteogenic differentiation, and gene expressions of osteoblasts in vitro, as well as promoted osteogenic activity than pure Zn in the femoral condyle defect repair model. The co-releasing of Zn, Mg and Ag ions did not induce toxic side effects. Collectively, low alloyed Zn-0.05Mg-0.1Ag indicated long-lasting mechanical integrity during degradation, and presented the ability to synergistically inhibit bacteria and promote osteogenesis, possessing tremendous potential in treating implant-associated infections. STATEMENT OF SIGNIFICANCE: Infection after fracture fixation (IAFF) remains the most common and serious side effects of orthopedic surgery. Additionally, widespread antibiotic use contributes to the development of multi-drug resistant bacteria such as methicillin-resistant staphylococcus aureus (MRSA), which exacerbates IAFF treatment and prevention. IAFF treatment and prevention remain clinically challenging, so implants with dual antibacterial and osteogenic functions are in high demand. The antibacterial efficacy and osteogenic activity of low-alloyed Zn-Mg-Ag (≤0.1 wt.% Mg, Ag) alloys were investigated in vitro and in vivo. The results showed that micro addition of Mg and Ag could significantly improve osseointegration function, mechanical properties, and antibacterial performance. These quantification findings shed new light on the development and understanding of dual functional Zn-based orthopedic implants.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Osteogênese , Zinco/farmacologia , Antibacterianos/farmacologia , Ligas/farmacologia , Implantes Absorvíveis , Teste de Materiais
2.
Biomedicines ; 9(9)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34572326

RESUMO

Although bone repair scaffolds are required to possess high radiopacity to be distinguished from natural bone tissues in clinical applications, the intrinsic radiopacity of them is usually insufficient. For improving the radiopacity, combining X-ray contrast agents with bone repair scaffolds is an effective method. In the present research, MgNH4PO4·H2O/SrHPO4 3D porous composite scaffolds with improved radiopacity were fabricated via the 3D printing technique. Here, SrHPO4 was firstly used as a radiopaque agent to improve the radiopacity of magnesium phosphate scaffolds. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) were used to characterize the phases, morphologies, and element compositions of the 3D porous composite scaffolds. The radiography image showed that greater SrHPO4 contents corresponded to higher radiopacity. When the SrHPO4 content reached 9.34%, the radiopacity of the composite scaffolds was equal to that of a 6.8 mm Al ladder. The porosity and in vitro degradation of the porous composite scaffolds were studied in detail. The results show that magnesium phosphate scaffolds with various Sr contents could sustainably degrade and release the Mg, Sr, and P elements during the experiment period of 28 days. In addition, the cytotoxicity on MC3T3-E1 osteoblast precursor cells was evaluated, and the results show that the porous composite scaffolds with a SrHPO4 content of 9.34% possessed superior cytocompatibility compared to that of the pure MgNH4PO4·H2O scaffolds when the extract concentration was 0.1 g/mL. Cell adhesion experiments showed that all of the scaffolds could support MC3T3-E1 cellular attachment well. This research indicates that MgNH4PO4·H2O/SrHPO4 porous composite scaffolds have potential applications in the bone repair fields.

4.
Biomed Res Int ; 2021: 3948638, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628779

RESUMO

BACKGROUND: Bone cement spacers are widely used in two-stage revision surgeries for periprosthetic joint infection (PJI) after total knee arthroplasty. Current spacer design results in insufficient release of drugs; therefore, current spacers have low efficacy. In this study, we explored a set of alternative articular spacer using 3D printing technology. This novel spacer will increase effectiveness of revision surgery for PJI. METHODS: The spacer was designed using CAD software and constructed on site using 3D-printed silicone mold during debridement surgery. We carried out a retrospective study among patients undergoing treatment using traditional static and new articular spacers. Infection control rate, bone loss, difficulty of revision surgery, knee joint range of motion, function evaluation, and subjective satisfaction of the patients in the two groups were compared. RESULTS: Forty-two patients undergoing knee revision surgery between Jan 2014 and Nov 2019 were included in this study. Twenty-two patients were treated with static antibiotic cement spacers, whereas the other twenty patients were with treated with 3D printing-assisted antibiotic loaded articulating spacers. Patients in the articular group showed significantly lower bone loss on the femur site and tibial site compared with patients in the static group. In addition, patients in the articular group showed significantly less operation time, intraoperative blood loss, and improved knee function and patient overall satisfaction compared with patients in the static group. CONCLUSIONS: The 3D printing-assisted articular spacer provides satisfactory range of motion during the interim period, prevents bone loss, facilitates second-stage reimplantation and postoperative rehabilitation, and results in low reinfection and complication rates.


Assuntos
Artroplastia do Joelho/efeitos adversos , Impressão Tridimensional/instrumentação , Infecções Relacionadas à Prótese/cirurgia , Reoperação/instrumentação , Idoso , Feminino , Humanos , Articulação do Joelho/cirurgia , Prótese do Joelho/efeitos adversos , Masculino , Pessoa de Meia-Idade , Satisfação do Paciente/estatística & dados numéricos , Desenho de Prótese , Estudos Retrospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA