Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 173, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267794

RESUMO

Pyroptosis is a newly discovered type of pro-inflammatory programmed cell death that plays a vital role in various processes such as inflammations, immune responses, and pathogen infections. As one of the main executioners of pyroptosis, gasdermin D (GSDMD) is a membrane pore-forming protein that typically exists in a self-inhibitory state. Once activated, GSDMD will be cleaved into an N-terminal fragment with pore-forming activity, becoming the key indicator of pyroptosis activation, and a C-terminal fragment. Although commercial antibodies against human and murine GSDMD proteins are currently available, their reactivity with porcine GSDMD (pGSDMD) is poor, which limits research on the biological functions of pGSDMD and pyroptosis in pigs in vivo and in vitro. Here, five monoclonal antibodies (mAbs) were prepared by immunizing BALB/c mice with procaryotically expressed full-length pGSDMD, all of which did not cross react with human and murine GSDMD proteins. Epitope mapping demonstrated that 15H6 recognizes amino acids (aa) at positions 28-34 of pGSDMD (LQTSDRF), 19H3 recognizes 257-260aa (PPQF), 23H10 and 27A10 recognize 78-82aa (GPFYF), and 25E2 recognizes 429-435aa (PPTLLGS). The affinity constant and isotype of 15H6, 19H3, 23H10, 27A10, and 25E2 mAbs were determined to be 1.32 × 10-9, 3.66 × 10-9, 9.04 × 10-9, 1.83 × 10-9, and 8.00 × 10-8 mol/L and IgG1/κ, IgG2a/κ, IgG2a/κ, IgG1/κ, and IgG1/κ, respectively. Heavy- and light-chain variable regions sequencing showed that the heavy-chain complementarity-determining region (CDR) sequences of all five mAbs are completely different, while the light-chain CDR sequences of the four mAbs that recognize the N-terminus of pGSDMD are identical. Our prepared mAbs provide valuable materials for studying pGSDMD function and pyroptosis. KEY POINTS: • A total of five mouse anti-pGSDMD mAbs were prepared, of which four recognize the N-terminus of pGSDMD and one recognize its C-terminus. • The main performance parameters of the five mAbs, including epitope, antibody titer, affinity constant, isotype, and heavy- and light-chain CDR, were characterized. • All five mAbs specifically recognize pGSDMD protein and do not cross react with human and murine GSDMD proteins.


Assuntos
Anticorpos Monoclonais , Gasderminas , Humanos , Suínos , Animais , Camundongos , Imunossupressores , Porinas , Imunoglobulina G , Camundongos Endogâmicos BALB C
2.
Vet Microbiol ; 289: 109957, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160508

RESUMO

It is a common sense that porcine reproductive and respiratory syndrome virus (PRRSV) infection could cause immune failure of classical swine fever (CSF) vaccine, and porcine alveolar macrophages (PAMs) are the target cells of both. To elucidate the role of macrophage polarization in PRRSV infection induced CSF vaccine failure, an immortal porcine alveolar macrophage line PAM39 cell line was used to investigate the effect of PRRSV or/and CSFV C-strain (CSFV-C) infection on macrophage polarization in vitro. Interestingly, PRRSV single infection or PRRSV co-infection with CSFV-C promoted PAM39 cells to M1, while CSFV-C single infection induced PAM39 cells to M2. After the construction of M1 and M2 PAM39 cells polarization models, M1 polarized PAM39 cells were found to inhibit the replication of CSFV-C, and Chinese medicine such as matrine, ginsenosides and astragalus polysaccharides could alleviate the polarization of PAM39 cells and the replication of CSFV-C. Furthermore, interferon (IFN)-γ and lipopolysaccharide (LPS) co-stimulation induced NF-κB activation while matrine treatment blocked M1 polarization-induced NF-κB pathway activation. These findings provided a theoretical basis for designing a new strategy to improve the immune effect of CSFV-C based on porcine alveolar macrophage polarization subtypes.


Assuntos
Peste Suína Clássica , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Vacinas , Suínos , Animais , NF-kappa B/metabolismo , Matrinas , Peste Suína Clássica/prevenção & controle , Macrófagos Alveolares , Replicação Viral , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Doenças dos Suínos/metabolismo
3.
Autophagy ; : 1-28, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084826

RESUMO

Senecavirus A (SVA) is a newly emerging picornavirus associated with swine vesicular lesions and neonatal mortality, threatening the global pig industry. Despite sustained efforts, the molecular mechanisms of SVA pathogenesis have not yet been fully elucidated. Here, we demonstrate for the first time that SVA infection can induce complete mitophagy in host cells, which depends on SVA replication. Mitophagy has been subsequently proven to promote SVA replication in host cells. Genome-wide screening of SVA proteins involved in inducing mitophagy showed that although VP2, VP3, 2C, and 3A proteins can independently induce mitophagy, only the 2C protein mediates mitophagy through direct interaction with TUFM (Tu translation elongation factor, mitochondrial). The glutamic acids at positions 196 and 211 of TUFM were shown to be two key sites for its interaction with 2C protein. Moreover, TUFM was discovered to interact directly with BECN1 and indirectly with the ATG12-ATG5 conjugate. Further experiments revealed that TUFM needs to undergo ubiquitination modification before being recognized by the macroautophagy/autophagy receptor protein SQSTM1/p62, and E3 ubiquitin ligase RNF185 catalyzes K27-linked polyubiquitination of TUFM through the interaction between RNF185's transmembrane domain 1 and TUFM to initiate SVA-induced mitophagy. The ubiquitinated TUFM is recognized and bound by SQSTM1, which in turn interacts with MAP1LC3/LC3, thereby linking the 2C-anchored mitochondria to the phagophore for sequestration into mitophagosomes, which ultimately fuse with lysosomes to achieve complete mitophagy. Overall, our results elucidated the molecular mechanism by which SVA induces mitophagy to promote self-replication and provide new insights into SVA pathogenesis.Abbreviations: aa: amino acid; Baf A1: bafilomycin A1; BHK-21: baby hamster kidney-21; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; co-IP: co-immunoprecipitation; CQ: chloroquine; DAPI: 4',6-diamidino-2'-phenylindole; DMSO: dimethyl sulfoxide; EGFP: enhanced green fluorescent protein; ER: endoplasmic reticulum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GST: glutathione S-transferase; HA: hemagglutinin; hpi: hours post-infection; hpt: hours post-transfection; IPTG: isopropyl ß-D-1-thiogalactopyranoside; mAb: monoclonal antibody; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; Mdivi-1: mitochondrial division inhibitor-1; MOI: multiplicity of infection; mRFP: monomeric red fluorescent protein; MS: mass spectrometry; ORF: open reading frame; PBS: phosphate-buffered saline; SD: standard deviation; SQSTM1/p62: sequestosome 1; ST: swine testis; SVA: Senecavirus A; TCID50: 50% tissue culture infectious dose; TIMM23: translocase of inner mitochondrial membrane 23; TM: transmembrane; TOMM20: translocase of outer mitochondrial membrane 20; TUFM: Tu translation elongation factor, mitochondrial; Ub: ubiquitin; UV: ultraviolet; VDAC1: voltage dependent anion channel 1; WT: wild-type; µg: microgram; µm: micrometer; µM: micromole.

4.
Proc Natl Acad Sci U S A ; 120(48): e2309506120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983498

RESUMO

African swine fever virus (ASFV), a devastating pathogen to the worldwide swine industry, mainly targets macrophage/monocyte lineage, but how the virus enters host cells has remained unclear. Here, we report that ASFV utilizes apoptotic bodies (ApoBDs) for infection and cell-cell transmission. We show that ASFV induces cell apoptosis of primary porcine alveolar macrophages (PAMs) at the late stage of infection to productively shed ApoBDs that are subsequently swallowed by neighboring PAMs to initiate a secondary infection as evidenced by electron microscopy and live-cell imaging. Interestingly, the virions loaded within ApoBDs are exclusively single-enveloped particles that are devoid of the outer layer of membrane and represent a predominant form produced during late infection. The in vitro purified ApoBD vesicles are capable of mediating virus infection of naive PAMs, but the transmission can be significantly inhibited by blocking the "eat-me" signal phosphatidyserine on the surface of ApoBDs via Annexin V or the efferocytosis receptor TIM4 on the recipient PAMs via anti-TIM4 antibody, whereas overexpression of TIM4 enhances virus infection. The same treatment however did not affect the infection by intracellular viruses. Importantly, the swine sera to ASFV exert no effect on the ApoBD-mediated transmission but can partially act on the virions lacking the outer layer of membrane. Thus, ASFV has evolved to hijack a normal cellular pathway for cell-cell spread to evade host responses.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vesículas Extracelulares , Suínos , Animais , Vírus da Febre Suína Africana/fisiologia , Macrófagos/metabolismo , Monócitos/metabolismo , Vesículas Extracelulares/metabolismo
5.
Virology ; 587: 109879, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37677987

RESUMO

Porcine enteric alphacoronavirus (PEAV) is a newly emerging swine enteropathogen that poses a threat to the swine industry. To understand the PEAV genome evolution, we performed a comprehensive analysis of the codon usage patterns in fifty-nine PEAV strains currently available. Phylogenetic analysis showed that PEAV can be divided into six lineages. Effective number of codons analysis demonstrated that the PEAV genome exhibits a low codon usage bias (CUB). Nucleotide composition analysis indicated that the PEAV genome has the most abundant nucleotide U content, with GC content (39.37% ± 0.08%) much lower than AU content (60.63% ± 0.08%). Neutrality and effective number of codons plot analyses suggested that natural selection rather than mutation pressure dominates the CUB of PEAV. Host adaptation analysis revealed that PEAV fits the codon usage pattern of non-human primates, humans and mice better than that of pigs. Our data enriches information on PEAV evolution, host adaptability, and cross-species transmission.


Assuntos
Alphacoronavirus , Uso do Códon , Animais , Suínos , Camundongos , Filogenia , Códon , Alphacoronavirus/genética , Seleção Genética , Nucleotídeos , Evolução Molecular
6.
One Health Adv ; 1(1): 3, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521530

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important pathogen for the global pork industry. Although modified live virus (MLV) vaccines are commonly used for PRRSV prevention and control,  they still carry a risk of infecting the host and replicating in target cells, thereby increasing the likehood of virus recombination and reversion to virulence. In this study, we inserted the target sequence of miR-142 into the nsp2 hypervariable region of PRRSV to inhibit viral replication in its host cells of pigs, with the aim of achieving virus attenuation. The chimeric virus RvJX-miR-142t was successfully rescued and retained its growth characteristics in MARC-145 cells. Furthermore, it did not replicate in MARC-145 cells transfected with miRNA-142 mimic. We also observed limited replication ability of RvJX-miR-142t in pulmonary alveolar macrophages, which are the main cell types that PRRSV infects. Our animal inoculation study showed that pigs infected with RvJX-miR-142t displayed less severe clinical symptoms, lower viremia titers, lighter lung lesions, and significantly lower mortality rates during the first 7 days post-inoculation, in comparison to pigs infected with the backbone virus RvJXwn. We detected a partially deletion of the miR-142 target sequence in the RvJX-miR-142t genome at 14 dpi. It is highly possible that the reversion of viral virulence observed in the later timepoints of our animal experiment was caused by that. Our study provided a new strategy for attenuating PRRSV and confirmed its effectiveness. However, further studies are necessary to increase the stability of this virus under host selection pressure.

7.
Vet Microbiol ; 284: 109825, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37453262

RESUMO

PRRSV and CSFV are both common infectious pathogens in porcine populations, posing significant threats to the healthy development of the porcine industry. Vaccine immunization is the main way to prevent and control these two diseases. Increasing studies have demonstrated that there is an interaction between PRRSV co-infection and CSFV vaccine immune failure. To investigate the effect of PRRSV infection on CSFV proliferation and its molecular mechanism, the proliferation dynamics of PRRSV/CSFV, the NLRP3 inflammasome components, and IL-1ß expression levels were detected in PRRSV/CSFV alone- or co-infection. Subsequently, the relationship between inflammasome activation, IL-1ß expression, and CSFV proliferation was analyzed through the construction of an inflammasome activation model, specific siRNA interference, and specific inhibitor treatment. The results showed that CSFV infection had a poor regulatory effect on NLRP3 inflammasome activation and IL-1ß maturation, but PRRSV and CSFV co-infection could significantly up-regulate the expression of NLRP3 and ASC, induce Caspase-1 activation, and promote IL-1ß maturation. It was further determined that NLRP3 inflammasome components played important roles in IL-1ß maturation and inhibiting CSFV proliferation by PRRSV. Additional experiments indicated that PRRSV replication is essential for NLRP3 inflammasome activation, IL-1ß maturation, and CSFV proliferation inhibition. More importantly, NLRP3 inflammasome activation is regulated by the TLR4-MyD88-NF-κB pathways. In conclusion, PRRSV infection induced IL-1ß maturation by activating the NLRP3 inflammasome through the TLR4-MyD88-NF-κB pathways and then inhibited the proliferation of CSFV. These data further improved the theoretical basis for PRRSV inducing inflammatory factors and leading to the failure of CSFV immunization.


Assuntos
Coinfecção , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Vacinas , Suínos , Animais , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , NF-kappa B/metabolismo , Transdução de Sinais , Fator 88 de Diferenciação Mieloide/genética , Receptor 4 Toll-Like , Coinfecção/veterinária , Proliferação de Células , Interleucina-1beta/genética
8.
J Virol ; 97(3): e0168922, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36916907

RESUMO

Fast evolution in the field of the replicase nsp2 represents a most prominent feature of porcine reproductive and respiratory syndrome virus (PRRSV). Here, we determined its biological significance in viral pathogenesis by constructing interlineage chimeric mutants between the Chinese highly pathogenic PRRSV (HP-PRRSV) strain JXwn06 (lineage 8) and the low-virulent NADC30-like strain CHsx1401 (lineage 1). Replacement with nsp2 from JXwn06 was surprisingly lethal to the backbone virus CHsx1401, but combined substitution with the structural protein-coding region (SP) gave rise to viable virus CHsx1401-SPnsp2JX. Meanwhile, a derivative carrying only the SP region (CHsx1401-SPJX) served as a control. Subsequent animal experiments revealed that acquisition of SP alone (CHsx1401-SPJX) did not allow CHsx1401 to gain much virulence, but additional swapping of HP-PRRSV nsp2 (CHsx1401-SPnsp2JX) enabled CHsx1401 to acquire some properties of HP-PRRSV, exemplified by prolonged high fever, microscopic lung hemorrhage, and a significant increase in proinflammatory cytokines in the acute stage. Consistent with this was the transcriptomic analysis of persistently infected secondary lymphoid tissues that revealed a much stronger induction of host cellular immune responses in this group and identified several core immune genes (e.g., TLR4, IL-1ß, MPO, etc.) regulated by HP-PRRSV nsp2. Interestingly, immune activation status in the individual groups correlated well with the rate of viremia clearance and viral tissue load reduction. Overall, the above results suggest that the Chinese HP-PRRSV nsp2 is a critical virulence regulator and highlight the importance of nsp2 genetic variation in modulating PRRSV virulence and persistence via immune modulation. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) has been a major threat to the world swine industry. In the field, rapid genetic variations (e.g., deletion, mutation, recombination, etc.) within the nsp2 region present an intriguing conundrum to PRRSV biology and pathogenesis. By making chimeric mutants, here, we show that the Chinese highly pathogenic PRRSV (HP-PRRSV) nsp2 is a virulence factor and a much stronger inducer of host immune responses (e.g., inflammation) than its counterpart, currently epidemic, NADC30-like strains. Differences in the ability to modulate host immunity provide insight into the mechanisms of why NADC30-like strains and their derivatives are rising to be the dominant viruses, whereas the Chinese HP-PRRSV strains gradually give away center stage in the field. Our results have important implications in understanding PRRSV evolution, interlineage recombination, and persistence.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , China/epidemiologia , Citocinas , Variação Genética , Genoma Viral , Filogenia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos , Virulência/genética
9.
Microbiol Spectr ; 10(6): e0308422, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36219105

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is a globally important disease threatening the pork industry, and modified live-virus (MLV) vaccines are widely used for its prevention. However, PRRS MLV shows high potential for reversion to virulence, leading to a major concern about its safety. Yet the revertant mechanism is still poorly understood. Here, attenuated virus JXwn06-P80, derived from the highly pathogenic PRRS virus (PRRSV) strain JXwn06 by serial passaging in MARC-145 cells, was reversely passaged in pigs through intranasal inoculation to mimic natural infection for 13 rounds, and the pathogenicity of viruses at the 3rd, 5th, 9th, 10th, and 11th passages was evaluated in pigs. From the 9th passage, the viruses caused mortality, which was related to their increased adaptability and replication efficiency (100 times higher than those of JXwn06-P80) in porcine alveolar macrophage (PAM) target cells. Similarly, JXwn06-P80 could also regain fatal virulence through reverse passage in PAMs for 25 or more passages, indicating that the increased adaptability in PAMs directly contributes to its regained fatal virulence. Next, the full-genome sequences were analyzed to explore the genetic evolutionary processes during adaptation both in vivo and in vitro. Finally, by a reverse genetic operation, four reverse mutation sites, NSP12-W121R, ORF2b (open reading frame 2b)-H9D, ORF5-H15L, and ORF5-V189L, were finally identified to partially contribute to the ability of the virus to adapt to PAMs, which may be related to virulence reversion during reverse passage. These findings provided direct scientific evidence for the virulence reversion of PRRS MLV and provided valuable clues for exploring its molecular mechanism. IMPORTANCE Reversion to virulence of a live attenuated vaccine is a public concern; however, direct scientific evidence is limited, and the mechanism is still poorly understood. Here, we present direct evidence for the reversion to virulence of PRRS MLV after serial passaging in pigs or target cells and found a correlation between virulence reversion and increased replication fitness in primary PAMs. The genetic evolutionary process during adaptation will provide valuable clues for exploring the molecular mechanism of PRRS MLV virulence reversion and offer important implications for understanding the reversion mechanisms of other vaccines.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Vacinas Virais , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Virulência/genética , Macrófagos Alveolares , Mutação , Vacinas Virais/genética
10.
Virulence ; 13(1): 1471-1485, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36005235

RESUMO

Porcine deltacoronavirus (PDCoV) is an emerging enteropathogen causing severe diarrhoea, dehydration, and death in nursing piglets and enormous economic losses for the global swine industry. Furthermore, it can infect multiple animal species including humans. Therefore, a rapid, definitive diagnostic assay is required for the effective control of this zoonotic pathogen. To identify PDCoV, we developed a nucleic acid detection assay combining reverse transcription recombinase-aided amplification (RT-RAA) with a lateral flow dipstick (LFD) targeting the highly conserved genomic region in the ORF1b gene. The RT-RAA-LFD assay exhibited good PDCoV detection reproducibility and repeatability and could be completed within 11 min. Ten minutes at 40 °C was required for nucleic acid amplification and 1 min at room temperature was needed for the visual LFD readout. The assay specifically detected PDCoV and did not cross-react with any other major swine pathogens. The 95% limit of detection (LOD) was 3.97 median tissue culture infectious dose PDCoV RNA per reaction. This performance was comparable to that of a reference TaqMan-based real-time RT-PCR (trRT-PCR) assay for PDCoV. Of 149 swine small intestine, rectal swab, and serum samples, 71 and 75 tested positive for PDCoV according to RT-RAA-LFD and trRT-PCR, respectively. The diagnostic coincidence rate for both assays was 97.32% (145/149) and the kappa value was 0.946 (p < 0.001). Overall, the RT-RAA-LFD assay is a user-friendly diagnostic tool that can rapidly and visually detect PDCoV.


Assuntos
Ácidos Nucleicos , Recombinases , Animais , Deltacoronavirus , Humanos , Técnicas de Amplificação de Ácido Nucleico , Recombinases/genética , Recombinases/metabolismo , Reprodutibilidade dos Testes , Transcrição Reversa , Sensibilidade e Especificidade , Suínos
11.
Vet Microbiol ; 273: 109513, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35952491

RESUMO

PRRSV and CSFV are both the main pathogens of pigs and pose great threats to the pig industry. Previous studies have shown that PRRSV infection or attenuated virus vaccination can reduce the antibody level of attenuated CSFV vaccine and even cause immune failure. The higher pro-inflammatory cytokines induced by PRRSV might play a significant role in inhibiting the proliferation of CSFV-C. However, the molecular mechanism has not been elucidated yet. Here, the effect of IL-1ß, a central mediator of immune-regulating inflammatory responses, on CSFV-C proliferation was investigated, as well as the mechanisms responsible for the production of IL-1ß in the PRRSV and CSFV-C co-infection systems. The results showed that co-infection could significantly increase IL-1ß production both at mRNA and protein levels with the infection progressing, and the IL-1ß upregulation was mainly triggered by PRRSV infection. Additional experiments indicated that IL-1ß inhibited the proliferation of CSFV-C in a cell-type independent manner at the replication and release stages. Furthermore, the IL-1ß production induced via the TLR4/MyD88 pathway and the downstream signaling pathways NF-κB, ERK1/2, P38, and JNK were involved by treatment with specific inhibitors or siRNA knockdown assays. Finally, we clarified that the NLRP3 inflammasome played a meaningful role in the maturation and release of IL-1ß. Together, the accumulated results provided a deeper understanding of the vaccination failure of CSFV caused by PRRSV co-infection as well as targets for the development of novel approaches for the vaccination and control of CSF.


Assuntos
Coinfecção , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , Proliferação de Células , Coinfecção/veterinária , Inflamassomos/genética , Interleucina-1beta/genética , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Suínos , Receptor 4 Toll-Like/genética
12.
Virus Res ; 319: 198854, 2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-35788015

RESUMO

It is a common phenomenon that PRRSV infection can interfere with the protective efficacy of the CSFV vaccine in clinical settings, and no effective treatment is available. In our previous study, we found that PRRSV infection could inhibit the replication of CSFV-C by promoting the high expression of inflammatory cytokines. In order to further investigate whether Chinese medicine could alleviate the inhibition effect, the PAM39 cells model, which was co-infected with PRRSV and CSFV-C, was established. The effects of Chinese medicine on this co-infection model, as well as the effect of astragalus polysaccharide on the TLRs/NF-κB/TNF-α pathways, were investigated. Our results demonstrated that PAM39 cells inoculated with different pathogenic PRRSV significantly inhibited the replication of CSFV-C and up-regulated the major inflammatory mediators, including TNF-α. For the following studies, 50 µM of astragalus polysaccharide was selected from six kinds of representative Chinese medicine based on their cytotoxicity, viral titers, and inflammatory mediators. Further experiments indicated that astragalus polysaccharide could alleviate the inhibition of CSFV-C replication in the co-infection group with no influence on cell viability. In addition, astragalus polysaccharide treatment clearly reduced P65 phosphorylation and down-regulated the expression of TLR7, TLR9, and TNF-α in co-infection group, implying that the TLRs/NF-κB/TNF-α pathways may play an important role in astragalus polysaccharide's anti-inflammatory response. In conclusion, astragalus polysaccharide treatment alleviated PRRSV-mediated inhibition of CSFV-C replication via the TLRs/NF-κB/TNF-α pathways, and the molecular mechanism of PRRSV co-infection leading to the failure of CSFV vaccine immunization was partially elucidated, providing a scientific basis for effective CSF prevention and control in pig farms.


Assuntos
Vírus da Febre Suína Clássica , Coinfecção , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Mediadores da Inflamação , NF-kappa B/metabolismo , Polissacarídeos/farmacologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Suínos , Fator de Necrose Tumoral alfa/genética
13.
Proc Natl Acad Sci U S A ; 119(29): e2201169119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858300

RESUMO

Protein kinase R (PKR) is a critical host restriction factor against invading viral pathogens. However, this molecule is inactivated in the cells infected with porcine reproductive and respiratory syndrome virus (PRRSV), an economically devastating pathogen to the world swine industry. Here, we report that this event is to suppress cellular inflammation and is mediated by the viral replicase protein nsp1ß. We show that nsp1ß is a stress-responsive protein, enters virus-induced stress granules (SGs) during infection, and repurposes SGs into a proviral platform, where it co-opts the SG core component G3BP1 to interact with PKR in a regulated manner. RNA interference silencing of G3BP1 or mutation of specific nsp1ß residues (VS19GG) can abolish the antagonization of PKR activation. The viral mutant carrying the corresponding mutations induces elevated level of PKR phosphorylation and pronounced production of inflammatory cytokines (e.g., tumor necrosis factor-α, interleukin [IL]-6, and IL-8), whereas small-interfering RNA knockdown of PKR or treatment with C16, a PKR inhibitor, blocks this effect. Thus, PRRSV has evolved a unique strategy to evade PKR restriction to suppress host inflammatory responses.


Assuntos
Fatores de Restrição Antivirais , DNA Helicases , Evasão da Resposta Imune , Proteínas de Ligação a Poli-ADP-Ribose , Vírus da Síndrome Respiratória e Reprodutiva Suína , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Grânulos de Estresse , Proteínas não Estruturais Virais , eIF-2 Quinase , Animais , Fatores de Restrição Antivirais/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Grânulos de Estresse/virologia , Suínos , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , eIF-2 Quinase/metabolismo
14.
Animals (Basel) ; 12(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35739924

RESUMO

Porcine circovirus 3 (PCV3) is an emerging virus, causing substantial economic losses in pig populations, that was first detected in 2016. Furthermore, the virus has already been reported in Europe, the Americas, and Asia, including China, indicating that the virus has spread worldwide. However, the molecular epidemiology of PCV3 still needs further study. To investigate PCV3 epidemiological characteristics in China, 2707 serum samples of pigs were randomly collected from 17 provinces in China between September 2018 and March 2022 and analyzed via PCR assays. The study showed that PCV3 infection was prevalent in the overall population with 31.07% (841/2707) and 100.0% (17/17) at sample and province levels, respectively, though the positivity rate of PCV3 varied from 7.41 to 70.0% in different provinces, suggesting that PCV3 infection has a widespread distribution in China. We selected 22 serum samples from different regions that had high levels of viral DNA for amplification and sequenced their ORF2 (Cap) gene. According to the phylogenetic analysis, all isolates in the current study could be grouped into two separate subclades, with 15 strains belonging to clade 3a and 7 strains belonging to clade 3b, indicating that PCV3a and PCV3b were the predominant subtypes in the regions of China studied. Meanwhile, additional analysis revealed that the capsid gene sequences identified in this study displayed 97.46~99.8% nucleotide (nt) and 97.06~100% amino acid (aa) sequence similarity with other PCV3 available reference strains, respectively. In general, our studies provide important insights for understanding the prevalence and evolution of PCV3 in China and will guide future efforts to develop measures for preventing and controlling the disease.

15.
Microbiol Spectr ; 10(4): e0027622, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35758677

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important pathogens for the global pork industry, characterized for its genetic variation and unsatisfied heterological protection from vaccines. A high-throughput screening platform for developing anti-PRRSV therapies is urgently needed. Here, an 11-amino-acid subunit HiBiT derived from NanoLuc luciferase was inserted into the PRRSV genome at four loci of the Nsp2 coding region or as an additional TRS2 driven open reading frame (ORF) between the ORF7 and 3'-untranscribed region (3'-UTR), respectively, and five recombinant viruses with luciferase activity were successfully rescued. The virological characteristics of the representative virus RvJX-Nsp2325-HiBiT were investigated. In vitro, it displayed similar growth kinetics as the parental virus and keeps the luciferase activity and genetic stability after eight rounds of serial passages. The concept-proof test confirmed that RvJX-Nsp2325-HiBiT can be easily used to evaluate the efficacy of antiviral reagents by detecting the reduction of luciferase activity, showing a consistent trend with infectious titers, as well as to set a novel convenient virus neutralization assay based on the intensity of luciferase activity. Last, the viral proliferation, virulence, validity, and HiBiT stability were further investigated in pig inoculation study, showing that the luciferase activity can be directly detected in the tissue samples or indirectly from the MARC-145 cells inoculated with sera from RvJX-Nsp2325-HiBiT-inoculated pigs. Taken together, the results indicate that the HiBiT-tagged virus is a convenient and stable tool for evaluating viral propagation both in vitro and in vivo, which can provide a high-efficient platform for screening and evaluating anti-PRRSV therapies. IMPORTANCE Luciferase reporter tagged virus is crucial to viral quantification in the study of viral replication, pathogenesis and exploring antiviral reagents. It is urgently needed for PRRSV academia to construct a stable, fast, and high-throughput reporting system, which can be used both in vitro and in vivo. Here, an 11-amino-acid luciferase subunit was successfully inserted into the PRRSV genome; the feasibility, genetic stability, and efficiency for viral quantification both in vitro and in vivo were characterized; and the results demonstrated it has greatly improved the convenience and efficiency for screening the anti-PRRSV reagents. Furthermore, a novel luciferase-based virus neutralization assay was successfully set, which can eliminate the step of sample gradient dilution and greatly improve the convenience and throughput of neutralizing antibody testing. Predictably, it will greatly facilitate the screening and evaluating anti-PRRSV therapies, as well as the mechanistic study of its replication and pathogenesis in the future.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Antivirais , Linhagem Celular , Luciferases/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos
16.
Viruses ; 14(5)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35632606

RESUMO

As an emergent picornavirus pathogenic to pigs, Senecavirus A (SVA) can replicate in pig kidneys and proliferates well in porcine kidney epithelial PK-15 cells. Here, tandem mass tags (TMT) labeling coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyze the proteome dynamic changes in PK-15 cells during SVA infection. In total, 314, 697 and 426 upregulated differentially expressed proteins (DEPs) and 131, 263 and 342 downregulated DEPs were identified at 12, 24 and 36 hpi, respectively. After ensuring reliability of the proteomic data by quantitative PCR and Western blot testing of five randomly selected DEPs, Mx1, eIF4E, G6PD, TOP1 and PGAM1, all the DEPs were subjected to multiple bioinformatics analyses, including GO, COG, KEGG and STRING. The results reveal that the DEPs were mainly involved in host innate and adaptive immune responses in the early and middle stages of SVA infection, while the DEPs mainly participated in various metabolic processes in the late stage of infection. Finally, we demonstrated that Mx1 protein exerts antiviral activity against SVA by interacting with VP1 and VP2 proteins dependent on its GTPase, oligomerization and interaction activities, while Mx1 interacts with VP3 only depending on its oligomerization activity. Collectively, our study provides valuable clues for further investigation of SVA pathogenesis.


Assuntos
Proteínas do Capsídeo , Proteômica , Animais , Cromatografia Líquida , Picornaviridae , Proteômica/métodos , Reprodutibilidade dos Testes , Suínos , Espectrometria de Massas em Tandem
17.
Viruses ; 14(4)2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-35458420

RESUMO

The nonstructural protein 1α (nsp1α) of the porcine reproductive and respiratory syndrome virus (PRRSV) has been shown to target swine leukocyte antigen class I (SLA-I) for degradation, but the molecular details remain unclear. In this report, we further mapped the critical residues within nsp1α by site-directed mutagenesis. We identified a cluster of residues (i.e., Phe17, Ile81, Phe82, Arg86, Thr88, Gly90, Asn91, Phe94, Arg97, Thr160, and Asn161) necessary for this function. Interestingly, they are all located in a structurally relatively concentrated region. Further analysis by reverse genetics led to the generation of two viable viral mutants, namely, nsp1α-G90A and nsp1α-T160A. Compared to WT, nsp1α-G90A failed to co-localize with either chain of SLA-I within infected cells, whereas nsp1α-T160A exhibited a partial co-localization relationship. Consequently, the mutant nsp1α-G90A exhibited an impaired ability to downregulate SLA-I in infected macrophages as demonstrated by Western blot, indirect immunofluorescence, and flow cytometry analysis. Consistently, the ubiquitination level of SLA-I was significantly reduced in the conditions of both infection and transfection. Together, our results provide further insights into the mechanism underlying PRRSV subversion of host immunity and have important implications in vaccine development.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Antígenos de Histocompatibilidade Classe I/genética , Nucleotidiltransferases , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Suínos , Proteínas não Estruturais Virais/química
18.
Viruses ; 14(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35458485

RESUMO

Suid herpesvirus 1 (SuHV-1), known as pseudorabies virus (PRV), is one of the most devastating swine pathogens in China, particularly the sudden occurrence of PRV variants in 2011. The higher pathogenicity and cross-species transmission potential of the newly emerged variants caused not only colossal economic losses, but also threatened public health. To uncover the underlying pathogenesis of PRV variants, Tandem Mass Tag (TMT)-based proteomic analysis was performed to quantitatively screen the differentially expressed cellular proteins in PRV-infected Vero cells. A total of 7072 proteins were identified and 960 proteins were significantly regulated: specifically 89 upregulated and 871 downregulated. To make it more credible, the expression of XRCC5 and XRCC6 was verified by western blot and RT-qPCR, and the results dovetailed with the proteomic data. The differentially expressed proteins were involved in various biological processes and signaling pathways, such as chaperonin-containing T-complex, NIK/NF-κB signaling pathway, DNA damage response, and negative regulation of G2/M transition of mitotic cell cycle. Taken together, our data holistically outline the interactions between PRV and host cells, and our results may shed light on the pathogenesis of PRV variants and provide clues for pseudorabies prevention.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Animais , Chlorocebus aethiops , Proteômica , Transdução de Sinais , Suínos , Células Vero
19.
Viruses ; 14(3)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35336858

RESUMO

The porcine reproductive and respiratory syndrome virus (PRRSV), especially the highly pathogenic strains, can cause serious acute lung injury (ALI), characterized by extensive hemorrhage, inflammatory cells and serous fluid infiltration in the lung vascular system. Meanwhile, the pulmonary microvascular endothelial cells (PMVECs) are essential for forming the air-blood barrier and keeping the water-salt balance to prevent leakage of circulating nutrients, solutes, and fluid into the underlying tissues. As well, they tightly regulate the influx of immune cells. To determine the possible relationship between the PMVECs' function changes and lung vascular permeability during PRRSV infection, the PMVECs were co-cultured with HP-PRRSV-inoculated primary pulmonary alveolar macrophages (PAMs) in transwell model, and then the RNA sequencing (RNA-seq) and comprehensive bioinformatics analysis were carried out to characterize the dynamic transcriptome landscapes of PMVECs. In total, 16,489 annotated genes were identified, with 275 upregulated and 270 downregulated differentially expressed genes (DEGs) were characterized at both 18 and 24 h post PRRSV inoculation. The GO terms and KEGG pathways analysis indicated that the immune response, metabolic pathways, cell death, cytokine-cytokine receptor interaction, viral responses, and apoptotic process are significantly regulated upon co-culture with PRRSV-infected PAMs. Moreover, according to the TERR and dextran flux assay results, dysregulation of TJ proteins, including CLDN1, CLDN4, CLDN8, and OCLN, is further confirmed to correlate with the increased permeability of PMVECs. These transcriptome profiles and DEGs will provide valuable clues for further exploring the roles of PMVECs in PRRSV-induced ALI in the future.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Células Endoteliais , Pulmão/patologia , Macrófagos Alveolares , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Suínos
20.
Microbiol Spectr ; 10(2): e0265921, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35348373

RESUMO

The 380-to-393-amino-acid glycoprotein I (gI) encoded by herpes simplex virus 1 (HSV-1) is a critical mediator for viral cell-to-cell spread and syncytium formation. Here we report a previously unrecognized aberrant form of gI in HSV-1-infected cells. Production of this molecule is independent of cell type and viral strains. It had an unexpected gel migration size of approximately 23 kDa, was packaged into viral particles, and could be coimmunoprecipitated by antibodies to both N and C termini of gI. Deep sequencing failed to detect alternative RNA splicing, and the invitro transcribed full-length mRNA gave rise to the 23 kDa protein in transfected cells. Combined mass spectrometry and antibody probing analyses detected peptide information across different regions of gI, suggesting the possibility of a full-length gI but with abnormal migration behavior. In line with this notion, the HA insertion mutagenesis revealed a stable fold in the gI extracellular region aa.38-196 resistant to denaturing conditions, whereas small deletions within this region failed the antibodies to detect the fast, but not the slow-moving species of gI. It is also intriguing that the structure could be perturbed to some extent by a gBsyn mutation, leading to exposure or shielding of the gI epitopes. Thus, the HSV-1 gI apparently adopts a very stable fold in its natural form, rendering it an unusual biophysical property. Our findings provide novel insight into the biological properties of HSV gI and have important implications in understanding the viral spread and pathogenesis. IMPORTANCE The HSV-1 gI is required for viral cell-to-cell spread within the host, but its behavior during infection has remained poorly defined. Along with the classic 66 kDa product, here we report a previously unrecognized, approximately 23 kDa form of gI. Biochemical and genetics analyses revealed that this molecule represents the full-length form of gI but adopts a stable fold in its extracellular domain that is resistant to denatured conditions, thus contributing to the aberrant migration rate. Our results revealed a novel property of HSV-1 gI and have important implications in understanding viral pathogenesis.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Técnicas de Cultura de Células , Linhagem Celular , Glicoproteínas , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Humanos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA