Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Cell Genom ; : 100421, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38697122

RESUMO

Regular exercise has many physical and brain health benefits, yet the molecular mechanisms mediating exercise effects across tissues remain poorly understood. Here we analyzed 400 high-quality DNA methylation, ATAC-seq, and RNA-seq datasets from eight tissues from control and endurance exercise-trained (EET) rats. Integration of baseline datasets mapped the gene location dependence of epigenetic control features and identified differing regulatory landscapes in each tissue. The transcriptional responses to 8 weeks of EET showed little overlap across tissues and predominantly comprised tissue-type enriched genes. We identified sex differences in the transcriptomic and epigenomic changes induced by EET. However, the sex-biased gene responses were linked to shared signaling pathways. We found that many G protein-coupled receptor-encoding genes are regulated by EET, suggesting a role for these receptors in mediating the molecular adaptations to training across tissues. Our findings provide new insights into the mechanisms underlying EET-induced health benefits across organs.

2.
STAR Protoc ; 5(2): 103007, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38691461

RESUMO

Although reduced representation bisulfite sequencing (RRBS) measures DNA methylation (DNAme) across CpG-rich genomic regions with high sensitivity, the assay can be time-consuming and prone to batch effects. Here, we present a high-throughput, automated RRBS protocol starting with DNA extraction from frozen rat tissues. We describe steps for RRBS library preparation, library quality control, and sequencing. We also detail an optimized pipeline for sequencing data processing. This protocol has been applied successfully to DNAme profiling across multiple rat tissues. For complete details on the use and execution of this protocol, please refer to Nair et al.1.

3.
Oncol Lett ; 27(6): 249, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38638844

RESUMO

Breast cancer is the most prevalent malignant tumor affecting women and represents the leading cause of female cancer-related mortality worldwide. Although distant organ metastasis accounts for the majority of breast cancer-related deaths, reports on bladder metastasis are limited in the existing literature. The present study describes the case of a patient with bladder metastasis originating from breast cancer. In addition, the present study also provides a review of 54 cases of similar disease that have been documented in the currently available literature. The literature review aims to elucidate the clinicopathological characteristics and therapeutic approaches for such conditions. The median time from breast cancer diagnosis to bladder metastasis was found to be 5.6 years (range, 0-28 years). The origin of the bladder metastases was predominantly invasive ductal carcinoma (IDC) accounting for 52.3% of cases, followed by invasive lobular carcinoma, accounting for 40.9% of cases. The pathology in the primary tumor was the same as the pathology of the bladder metastases in all cases. There was an 88.9% concordance rate for estrogen receptor status, while the progesterone receptor status was 83.3% and the human epidermal growth factor receptor 2 expression status was 100%. The primary initial symptoms included urinary system manifestations, such as increased frequency, urgency, dysuria, urinary incontinence, nocturia and gross hematuria. For the cystoscopic examination, the predominant findings were bladder wall thickening or masses, along with ureteral orifice masses. Overall, the present study demonstrated that the occurrence of bladder metastasis often follows the metastasis of other organs, with IDC being the most prevalent subtype. The pathological characteristics between the primary tumor and bladder metastasis exhibit a high degree of concordance.

4.
PLoS One ; 19(3): e0301026, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38536869

RESUMO

Injury related to blast exposure dramatically rose during post-911 era military conflicts in Iraq and Afghanistan. Mild traumatic brain injury (mTBI) is among the most common injuries following blast, an exposure that may not result in a definitive physiologic marker (e.g., loss of consciousness). Recent research suggests that exposure to low level blasts and, more specifically repetitive blast exposure (RBE), which may be subconcussive in nature, may also impact long term physiologic and psychological outcomes, though findings have been mixed. For military personnel, blast-related injuries often occur in chaotic settings (e.g., combat), which create challenges in the immediate assessment of related-injuries, as well as acute and post-acute sequelae. As such, alternate means of identifying blast-related injuries are needed. Results from previous work suggest that epigenetic markers, such as DNA methylation, may provide a potential stable biomarker of cumulative blast exposure that can persist over time. However, more research regarding blast exposure and associations with short- and long-term sequelae is needed. Here we present the protocol for an observational study that will be completed in two phases: Phase 1 will address blast exposure among Active Duty Personnel and Phase 2 will focus on long term sequelae and biological signatures among Veterans who served in the recent conflicts and were exposed to repeated blast events as part of their military occupation. Phase 2 will be the focus of this paper. We hypothesize that Veterans will exhibit similar differentially methylated regions (DMRs) associated with changes in sleep and other psychological and physical metrics, as observed with Active Duty Personnel. Additional analyses will be conducted to compare DMRs between Phase 1 and 2 cohorts, as well as self-reported psychological and physical symptoms. This comparison between Service Members and Veterans will allow for exploration regarding the natural history of blast exposure in a quasi-longitudinal manner. Findings from this study are expected to provide additional evidence for repetitive blast-related physiologic changes associated with long-term neurobehavioral symptoms. It is expected that findings will provide foundational data for the development of effective interventions following RBE that could lead to improved long-term physical and psychological health.


Assuntos
Traumatismos por Explosões , Concussão Encefálica , Lesões Encefálicas , Militares , Transtornos de Estresse Pós-Traumáticos , Veteranos , Humanos , Estados Unidos/epidemiologia , Veteranos/psicologia , Lesões Encefálicas/psicologia , Militares/psicologia , Concussão Encefálica/complicações , Traumatismos por Explosões/complicações , Sono , Transtornos de Estresse Pós-Traumáticos/psicologia , Guerra do Iraque 2003-2011 , Campanha Afegã de 2001- , Estudos Observacionais como Assunto
5.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542520

RESUMO

Injuries and subclinical effects from exposure to blasts are of significant concern in military operational settings, including tactical training, and are associated with self-reported concussion-like symptomology and physiological changes such as increased intestinal permeability (IP), which was investigated in this study. Time-series gene expression and IP biomarker data were generated from "breachers" exposed to controlled, low-level explosive blast during training. Samples from 30 male participants at pre-, post-, and follow-up blast exposure the next day were assayed via RNA-seq and ELISA. A battery of symptom data was also collected at each of these time points that acutely showed elevated symptom reporting related to headache, concentration, dizziness, and taking longer to think, dissipating ~16 h following blast exposure. Evidence for bacterial translocation into circulation following blast exposure was detected by significant stepwise increase in microbial diversity (measured via alpha-diversity p = 0.049). Alterations in levels of IP protein biomarkers (i.e., Zonulin, LBP, Claudin-3, I-FABP) assessed in a subset of these participants (n = 23) further evidenced blast exposure associates with IP. The observed symptom profile was consistent with mild traumatic brain injury and was further associated with changes in bacterial translocation and intestinal permeability, suggesting that IP may be linked to a decrease in cognitive functioning. These preliminary findings show for the first time within real-world military operational settings that exposures to blast can contribute to IP.


Assuntos
Traumatismos por Explosões , Concussão Encefálica , Militares , Humanos , Masculino , Militares/psicologia , Função da Barreira Intestinal , Traumatismos por Explosões/complicações , Concussão Encefálica/complicações , Biomarcadores
6.
Mol Psychiatry ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278992

RESUMO

Human genetic studies indicate that suicidal ideation and behavior are both heritable. Most studies have examined associations between aberrant gene expression and suicide behavior, but behavior risk is linked to the severity of suicidal ideation. Through a gene network approach, this study investigates how gene co-expression patterns are associated with suicidal ideation and severity using RNA-seq data in peripheral blood from 46 live participants with elevated suicidal ideation and 46 with no ideation. Associations with the presence of suicidal ideation were found within 18 co-expressed modules (p < 0.05), as well as in 3 co-expressed modules associated with suicidal ideation severity (p < 0.05, not explained by severity of depression). Suicidal ideation presence and severity-related gene modules with enrichment of genes involved in defense against microbial infection, inflammation, and adaptive immune response were identified and investigated using RNA-seq data from postmortem brain that revealed gene expression differences with moderate effect sizes in suicide decedents vs. non-suicides in white matter, but not gray matter. Findings support a role of brain and peripheral blood inflammation in suicide risk, showing that suicidal ideation presence and severity are associated with an inflammatory signature detectable in blood and brain, indicating a biological continuity between ideation and suicidal behavior that may underlie a common heritability.

7.
Front Psychiatry ; 14: 1231031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779624

RESUMO

Introduction: Studies showing associations between inflammation in suicide are typically cross-sectional. Present study investigated how cytokine levels track with suicidal ideation and severity longitudinally. Methods: Veterans with a diagnosis of major depressive disorder (MDD) with or without suicide attempt history (MDD/SA n = 38, MDD/NS n = 41) and non-psychiatric non-attempter controls (HC n = 33) were recruited, MDD/SA and HC groups were followed longitudinally at 3 months and 6 months. Blood plasma was collected and processed using Luminex Immunology Multiplex technology. Results: Significant differences in depression severity (BDI) and suicidal ideation severity (SSI) were observed across all groups at study entry, wherein MDD/SA group had the highest scores followed by MDD/NS and HC, respectively. Cytokines IL-1ß, IL-4, TNF-α, IFN-γ, and IL-6 were examined at study entry and longitudinally, with IL6 levels differing significantly across the groups (p = 0.0123) at study entry. Significant differences in changes in cytokine levels between depressed attempters and the control group were detected for IL-6 (interaction F1,91.77 = 5.58, p = 0.0203) and TNF-α (F1,101.73 = 4.69, p = 0.0327). However, only depressed attempters showed a significant change, in IL-6 and TNF-α levels, decreasing over time [IL-6: b = -0.04, 95% CI = (-0.08, -0.01), p = 0.0245 and TNF-α: b = -0.02, 95% CI = (-0.04, -0.01), p = 0.0196]. Although IL-6 levels were not predictive of suicidal ideation presence [OR = 1.34, 95% CI = (0.77, 2.33), p = 0.3067], IL-6 levels were significantly associated with suicidal ideation severity (b = 0.19, p = 0.0422). Discussion: IL-6 was not associated with presence of suicidal ideation. IL-6 however, was associated with severity of ideation, suggesting that IL-6 may be useful in clinical practice, as an objective marker of heightened suicide risk.

8.
Res Sq ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37398042

RESUMO

Human genetic studies indicate that suicidal ideation and behavior are both heritable. Most studies have examined associations between aberrant gene expression and suicide behavior, but behavior risk is linked to severity of suicidal ideation. Through a gene network approach, this study investigates how gene co-expression patterns are associated with suicidal ideation and severity using RNA-seq data in peripheral blood from 46 live participants with elevated suicidal ideation and 46 with no ideation. Associations with presence and severity of suicidal ideation were found within 18 and 3 co-expressed modules respectively (p < 0.05), not explained by severity of depression. Suicidal ideation presence and severity-related gene modules with enrichment of genes involved in defense against microbial infection, inflammation, and adaptive immune response were identified, and tested using RNA-seq data from postmortem brain that revealed gene expression differences in suicide decedents vs. non-suicides in white matter, but not gray matter. Findings support a role of brain and peripheral blood inflammation in suicide risk, showing that suicidal ideation presence and severity is associated with an inflammatory signature detectable in blood and brain, indicating a biological continuity between ideation and suicidal behavior that may underlie a common heritability.

9.
Cell Rep Methods ; 3(2): 100395, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36936082

RESUMO

Assays detecting blood transcriptome changes are studied for infectious disease diagnosis. Blood-based RNA alternative splicing (AS) events, which have not been well characterized in pathogen infection, have potential normalization and assay platform stability advantages over gene expression for diagnosis. Here, we present a computational framework for developing AS diagnostic biomarkers. Leveraging a large prospective cohort of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and whole-blood RNA sequencing (RNA-seq) data, we identify a major functional AS program switch upon viral infection. Using an independent cohort, we demonstrate the improved accuracy of AS biomarkers for SARS-CoV-2 diagnosis compared with six reported transcriptome signatures. We then optimize a subset of AS-based biomarkers to develop microfluidic PCR diagnostic assays. This assay achieves nearly perfect test accuracy (61/62 = 98.4%) using a naive principal component classifier, significantly more accurate than a gene expression PCR assay in the same cohort. Therefore, our RNA splicing computational framework enables a promising avenue for host-response diagnosis of infection.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Processamento Alternativo/genética , Teste para COVID-19 , RNA , Estudos Prospectivos , Biomarcadores/análise
10.
Mol Syst Biol ; 19(5): e11361, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36919946

RESUMO

DNA methylation comprises a cumulative record of lifetime exposures superimposed on genetically determined markers. Little is known about methylation dynamics in humans following an acute perturbation, such as infection. We characterized the temporal trajectory of blood epigenetic remodeling in 133 participants in a prospective study of young adults before, during, and after asymptomatic and mildly symptomatic SARS-CoV-2 infection. The differential methylation caused by asymptomatic or mildly symptomatic infections was indistinguishable. While differential gene expression largely returned to baseline levels after the virus became undetectable, some differentially methylated sites persisted for months of follow-up, with a pattern resembling autoimmune or inflammatory disease. We leveraged these responses to construct methylation-based machine learning models that distinguished samples from pre-, during-, and postinfection time periods, and quantitatively predicted the time since infection. The clinical trajectory in the young adults and in a diverse cohort with more severe outcomes was predicted by the similarity of methylation before or early after SARS-CoV-2 infection to the model-defined postinfection state. Unlike the phenomenon of trained immunity, the postacute SARS-CoV-2 epigenetic landscape we identify is antiprotective.


Assuntos
COVID-19 , Adulto Jovem , Humanos , COVID-19/genética , SARS-CoV-2/genética , Estudos Prospectivos , Metilação de DNA/genética , Processamento de Proteína Pós-Traducional
11.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36711841

RESUMO

Transcription factors (TFs) play a key role in regulating gene expression and responses to stimuli. We conducted an integrated analysis of chromatin accessibility, DNA methylation, and RNA expression across eight rat tissues following endurance exercise training (EET) to map epigenomic changes to transcriptional changes and determine key TFs involved. We uncovered tissue-specific changes and TF motif enrichment across all omic layers, differentially accessible regions (DARs), differentially methylated regions (DMRs), and differentially expressed genes (DEGs). We discovered distinct routes of EET-induced regulation through either epigenomic alterations providing better access for TFs to affect target genes, or via changes in TF expression or activity enabling target gene response. We identified TF motifs enriched among correlated epigenomic and transcriptomic alterations, DEGs correlated with exercise-related phenotypic changes, and EET-induced activity changes of TFs enriched for DEGs among their gene targets. This analysis elucidates the unique transcriptional regulatory mechanisms mediating diverse organ effects of EET.

12.
Asian J Androl ; 25(1): 132-136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35532557

RESUMO

A cross-sectional study was conducted to estimate the age-stratified normal levels and age-related changes in the risk predictors of benign prostatic hyperplasia (BPH) progression. A total of 4706 male participants aged 40 years or older in Zhengzhou (China) were enrolled. The values of the International Prostate Symptom Score (IPSS), prostate-specific antigen (PSA), prostate volume (PV), and postvoid residual urine volume (PVR) significantly increased with age. Nonlinear relationships between age and IPSS scores ≥8 (P for nonlinearity = 0.046), PSA level ≥1.6 ng ml-1, PV ≥31 ml, or PVR ≥39 ml (all P for nonlinearity <0.001) were observed. After the age of 61 years, the risk indicators related to BPH progression were positively correlated with age (odds ratio [OR] >1), regardless of the predictors of the IPSS score, PSA level, PV, or PVR; and the OR values increased gradually. Therefore, after the age of 61 years, the risk predictors related to BPH progression were positively correlated with age.


Assuntos
Hiperplasia Prostática , Humanos , Masculino , Hiperplasia Prostática/epidemiologia , Hiperplasia Prostática/diagnóstico , Antígeno Prostático Específico , Estudos Transversais , População do Leste Asiático , Fatores de Risco
13.
Microbiol Spectr ; 10(6): e0183722, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36374040

RESUMO

We investigated the temporal profile of multiple components of the serological response after asymptomatic or mildly symptomatic SARS-CoV-2 infection, in a cohort of 67 previously SARS-CoV-2 naive young adults, up to 8.5 months after infection. We found a significant decrease of spike IgG and neutralization antibody titers from early (11 to 56 days) to late (4 to 8.5 months) time points postinfection. Over the study period, S1-specific IgG levels declined significantly faster than that of the S2-specific IgG. Further, serum antibodies from PCR-confirmed participants cross-recognized S2, but not S1, of the betacoronaviruses HKU1 and OC43, suggesting a greater degree of cross-reactivity of S2 among betacoronaviruses. Antibody-Dependent Natural Killer cell Activation (ADNKA) was detected at the early time point but significantly decreased at the late time point. Induction of serum Antibody-Dependent Monocyte Phagocytosis (ADMP) was detected in all the infected participants, and its levels remained stable over time. Additionally, a reduced percentage of participants had detectable neutralizing activity against the Beta (50%), Gamma (61 to 67%), and Delta (90 to 94%) variants, both early and late postinfection, compared to the ancestral strain (100%). Antibody binding to S1 and RBD of Beta, Gamma, Delta (1.7 to 2.3-fold decrease), and Omicron (10 to 16-fold decrease) variants was also significantly reduced compared to the ancestral SARS-CoV-2 strain. Overall, we found variable temporal profiles of specific components and functionality of the serological response to SARS-CoV-2 in young adults, which is characterized by lasting, but decreased, neutralizing activity and antibody binding to S1, stable ADMP activity, and relatively stable S2-specific IgG levels. IMPORTANCE Adaptive immunity mediated by antibodies is important for controlling SARS-CoV-2 infection. While vaccines against COVID-19 are currently widely distributed, a high proportion of the global population is still unvaccinated. Therefore, understanding the dynamics and maintenance of the naive humoral immune response to SARS-CoV-2 is of great importance. In addition, long-term responses after asymptomatic infection are not well-characterized, given the challenges in identifying such cases. Here, we investigated the longitudinal humoral profile in a well-characterized cohort of young adults with documented asymptomatic or mildly symptomatic SARS-CoV-2 infection. By analyzing samples collected preinfection, early after infection and during late convalescence, we found that, while neutralizing activity decreased over time, high levels of serum S2 IgG and Antibody-Dependent Monocyte Phagocytosis (ADMP) activity were maintained up to 8.5 months after infection. This suggests that a subset of antibodies with specific functions could contribute to long-term protection against SARS-CoV-2 in convalescent unvaccinated individuals.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto Jovem , Humanos , Vacinas contra COVID-19 , Monócitos , Imunoglobulina G , Anticorpos Antivirais , Anticorpos Neutralizantes
14.
Cell Syst ; 13(11): 924-931.e4, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36323307

RESUMO

Male sex is a major risk factor for SARS-CoV-2 infection severity. To understand the basis for this sex difference, we studied SARS-CoV-2 infection in a young adult cohort of United States Marine recruits. Among 2,641 male and 244 female unvaccinated and seronegative recruits studied longitudinally, SARS-CoV-2 infections occurred in 1,033 males and 137 females. We identified sex differences in symptoms, viral load, blood transcriptome, RNA splicing, and proteomic signatures. Females had higher pre-infection expression of antiviral interferon-stimulated gene (ISG) programs. Causal mediation analysis implicated ISG differences in number of symptoms, levels of ISGs, and differential splicing of CD45 lymphocyte phosphatase during infection. Our results indicate that the antiviral innate immunity set point causally contributes to sex differences in response to SARS-CoV-2 infection. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
COVID-19 , Imunidade Inata , Caracteres Sexuais , Feminino , Humanos , Masculino , Adulto Jovem , COVID-19/imunologia , Interferons , Proteômica , SARS-CoV-2
16.
Epidemiology ; 33(6): 797-807, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35944149

RESUMO

BACKGROUND: Marine recruits training at Parris Island experienced an unexpectedly high rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, despite preventive measures including a supervised, 2-week, pre-entry quarantine. We characterize SARS-CoV-2 transmission in this cohort. METHODS: Between May and November 2020, we monitored 2,469 unvaccinated, mostly male, Marine recruits prospectively during basic training. If participants tested negative for SARS-CoV-2 by quantitative polymerase chain reaction (qPCR) at the end of quarantine, they were transferred to the training site in segregated companies and underwent biweekly testing for 6 weeks. We assessed the effects of coronavirus disease 2019 (COVID-19) prevention measures on other respiratory infections with passive surveillance data, performed phylogenetic analysis, and modeled transmission dynamics and testing regimens. RESULTS: Preventive measures were associated with drastically lower rates of other respiratory illnesses. However, among the trainees, 1,107 (44.8%) tested SARS-CoV-2-positive, with either mild or no symptoms. Phylogenetic analysis of viral genomes from 580 participants revealed that all cases but one were linked to five independent introductions, each characterized by accumulation of mutations across and within companies, and similar viral isolates in individuals from the same company. Variation in company transmission rates (mean reproduction number R 0 ; 5.5 [95% confidence interval [CI], 5.0, 6.1]) could be accounted for by multiple initial cases within a company and superspreader events. Simulations indicate that frequent rapid-report testing with case isolation may minimize outbreaks. CONCLUSIONS: Transmission of wild-type SARS-CoV-2 among Marine recruits was approximately twice that seen in the community. Insights from SARS-CoV-2 outbreak dynamics and mutations spread in a remote, congregate setting may inform effective mitigation strategies.


Assuntos
COVID-19 , Surtos de Doenças , Militares , COVID-19/epidemiologia , COVID-19/prevenção & controle , Surtos de Doenças/prevenção & controle , Feminino , Humanos , Masculino , Militares/estatística & dados numéricos , Filogenia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Estados Unidos/epidemiologia
17.
J Biol Chem ; 298(7): 102072, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35643321

RESUMO

Mammalian reproduction depends on the gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone, which are secreted by pituitary gonadotrope cells. The zinc-finger transcription factor GATA2 was previously implicated in FSH production in male mice; however, its mechanisms of action and role in females were not determined. To directly address GATA2 function in gonadotropes, we generated and analyzed gonadotrope-specific Gata2 KO mice using the Cre-lox system. We found that while conditional KO (cKO) males exhibited ∼50% reductions in serum FSH levels and pituitary FSHß subunit (Fshb) expression relative to controls, FSH production was apparently normal in cKO females. In addition, RNA-seq analysis of purified gonadotropes from control and cKO males revealed a profound decrease in expression of gremlin (Grem1), a bone morphogenetic protein (BMP) antagonist. We show Grem1 was expressed in gonadotropes, but not other cell lineages, in the adult male mouse pituitary. Furthermore, Gata2, Grem1, and Fshb mRNA levels were significantly higher in the pituitaries of WT males relative to females but decreased in males treated with estradiol and increased following ovariectomy in control but not cKO females. Finally, we found that recombinant gremlin stimulated Fshb expression in pituitary cultures from WT mice. Collectively, the data suggest that GATA2 promotes Grem1 expression in gonadotropes and that the gremlin protein potentiates FSH production. The mechanisms of gremlin action have not yet been established but may involve attenuation of BMP binding to activin type II receptors in gonadotropes, facilitating induction of Fshb transcription by activins or related ligands.


Assuntos
Proteínas Morfogenéticas Ósseas , Hormônio Foliculoestimulante , Fator de Transcrição GATA2 , Gonadotrofos , Peptídeos e Proteínas de Sinalização Intercelular , Ativinas/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Feminino , Hormônio Foliculoestimulante/sangue , Subunidade beta do Hormônio Folículoestimulante/sangue , Fator de Transcrição GATA2/genética , Gonadotrofos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos
18.
MethodsX ; 9: 101681, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464805

RESUMO

ATAC-seq is a fast and sensitive method for the epigenomic profiling of open chromatin and for mapping of transcription factor binding sites [1]. Despite the development of the Omni-ATAC protocol for the profiling of chromatin accessibility in frozen tissues [2], studies in adipose tissue have been restricted due to technical challenges including the high lipid content of adipocytes and reproducibility issues between replicates. Here, we provide a modified Omni-ATAC protocol that achieves high data reproducibility in various tissue types from rat, including adipose and muscle tissues [3].•This protocol describes a methodology that enables chromatin accessibility profiling from snap-frozen rat adipose and muscle tissues.•The technique comprises an optimized bead-based tissue homogenization process that substitutes to Dounce homogenization, reduces variability in the experimental procedure, and is adaptable to various tissue types.•In comparison with the Omni-ATAC protocol, the method described here results in improved ATAC-seq data quality that complies with ENCODE quality standards.

19.
Front Immunol ; 13: 821730, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479098

RESUMO

Young adults infected with SARS-CoV-2 are frequently asymptomatic or develop only mild disease. Because capturing representative mild and asymptomatic cases require active surveillance, they are less characterized than moderate or severe cases of COVID-19. However, a better understanding of SARS-CoV-2 asymptomatic infections might shed light into the immune mechanisms associated with the control of symptoms and protection. To this aim, we have determined the temporal dynamics of the humoral immune response, as well as the serum inflammatory profile, of mild and asymptomatic SARS-CoV-2 infections in a cohort of 172 initially seronegative prospectively studied United States Marine recruits, 149 of whom were subsequently found to be SARS-CoV-2 infected. The participants had blood samples taken, symptoms surveyed and PCR tests for SARS-CoV-2 performed periodically for up to 105 days. We found similar dynamics in the profiles of viral load and in the generation of specific antibody responses in asymptomatic and mild symptomatic participants. A proteomic analysis using an inflammatory panel including 92 analytes revealed a pattern of three temporal waves of inflammatory and immunoregulatory mediators, and a return to baseline for most of the inflammatory markers by 35 days post-infection. We found that 23 analytes were significantly higher in those participants that reported symptoms at the time of the first positive SARS-CoV-2 PCR compared with asymptomatic participants, including mostly chemokines and cytokines associated with inflammatory response or immune activation (i.e., TNF-α, TNF-ß, CXCL10, IL-8). Notably, we detected 7 analytes (IL-17C, MMP-10, FGF-19, FGF-21, FGF-23, CXCL5 and CCL23) that were higher in asymptomatic participants than in participants with symptoms; these are known to be involved in tissue repair and may be related to the control of symptoms. Overall, we found a serum proteomic signature that differentiates asymptomatic and mild symptomatic infections in young adults, including potential targets for developing new therapies and prognostic tests.


Assuntos
COVID-19 , Fatores de Crescimento de Fibroblastos , Humanos , Interleucina-17 , Metaloproteinase 10 da Matriz , Proteômica , SARS-CoV-2
20.
Biol Psychiatry ; 91(6): 572-581, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35027166

RESUMO

BACKGROUND: Transcriptome studies have revealed age-, disease-, and region-associated microglial phenotypes reflecting changes in microglial function during development, aging, central nervous system homeostasis, and pathology. The molecular mechanisms that contribute to these transcriptomic changes are largely unknown. The aim of this study was to characterize the DNA methylation landscape of human microglia and the factors that contribute to variations in the microglia methylome. We hypothesized that both age and brain region would have a large impact on DNA methylation in microglia. METHODS: Microglia from postmortem brain tissue of four different brain regions of 22 donors, encompassing 1 patient with schizophrenia, 13 patients with mood disorder pathology, and 8 control subjects, were isolated and assayed using a genome-wide methylation array. RESULTS: We found that human microglial cells have a methylation profile distinct from bulk brain tissue and neurons, and age explained a considerable part of the variation. Additionally, we showed that interindividual factors had a much larger effect on the methylation landscape of microglia than brain region, which was also seen at the transcriptome level. In our exploratory analysis, we found various differentially methylated regions that were related to disease status (mood disorder vs. control). This included differentially methylated regions that are linked to gene expression in microglia, as well as to myeloid cell function or neuropsychiatric disorders. CONCLUSIONS: Although based on relatively small samples, these findings suggest that the methylation profile of microglia is responsive to interindividual variations and thereby plays an important role in the heterogeneity of microglia observed at the transcriptome level.


Assuntos
Epigenoma , Microglia , Encéfalo/metabolismo , Metilação de DNA , Humanos , Microglia/metabolismo , Transtornos do Humor/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA