Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 11(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499157

RESUMO

Ornamental feather coloration is usually a reflection of male quality and plays an important role during courtship, whereas the essence of male quality at the genetic level is not well understood. Major histocompatibility complex (MHC)-based mate choice has been observed in various vertebrates. Here, we investigated the relationship between the coloration of cape feathers and the MHC genotypes in golden pheasants (Chrysolophus pictus). We found that feather coloration differed sharply among different individuals (brightness: 1827.20 ± 759.43, chroma: 1241.90 ± 468.21, hue: 0.46 ± 0.06). Heterozygous individuals at the most polymorphic MHC locus (IA2) had brighter feathers than homozygous individuals (Z = -2.853, p = 0.004) and were more saturated in color (Z = -2.853, p = 0.004). However, feather coloration was not related to other MHC loci or to overall genetic heterozygosity (p > 0.050). Our study suggested that coloration of cape feathers might signal IA2 genotypes in golden pheasants.

2.
Mol Phylogenet Evol ; 110: 93-103, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28286102

RESUMO

Major histocompatibility complex (MHC) is a good marker system for geographical genetics since they are functional genes in the immune system that are likely to affect the fitness of the individual, and the survival and evolutionary potential of a population in a changing environment. Golden pheasant (Chrysolophus pictus) is a wild Phasianidae distributed in central and north China. In this study, we used a locus-specific genotyping technique for MHC IIB genes of golden pheasant. Combining with microsatellites (simple sequence repeat, SSR) and mitochondrial DNA (mtDNA) D-loop region, we investigated the demographic history and illuminate genetic structure of this bird in detail. SYR (south of Yangtze river) - NYR (north of Yangtze river) lineages, separated by Yangtze River, were defined in genetic structure of MHC IIB. NYR was supposed as refuge during glacial period, suggested by diversity parameters and more ancient alleles in this region. Based on this hypothesis, there was gene flow from NYR to SYR, which was proved by three pieces of evidence: (1) distinct demographic histories of SYR (kept stable) and NYR (experienced expansion); (2) specific affiliation of LC in genetic structure of SSR and MHC genes; (3) significant gene flow from NYR to SYR. Moreover, we also found balancing selection by combination of three Grouping A2's regions (SC, QL and North) into one in Grouping B4 (NYR) and no pattern of isolation by distance (IBD) found in MHC IIB, whereas for SSR we found a relatively strong and significant IBD. Several mechanisms in the evolution of MHC IIB genes, including recombination, historically positive selection, trans-species evolution and concerted evolution, were shown by molecular and phylogenetic analysis. Overall these results suggest the Yangtze River was inferred to be a geological barrier for this avian and NYR might experience population expansion, which invaded into a neighboring region. This study contributes to the understanding of the effects of geographic features on contemporary patterns of genetic variation in the golden pheasant in China, and helps us to define the adaptive unite (AU) for this avian.


Assuntos
Galliformes/genética , Fluxo Gênico , Loci Gênicos , Animais , China , Genética Populacional , Geografia , Antígenos de Histocompatibilidade Classe II/genética , Repetições de Microssatélites/genética , Conformação de Ácido Nucleico , Filogenia , Polimorfismo Genético , Seleção Genética , Alinhamento de Sequência
3.
BMC Evol Biol ; 16: 42, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26892934

RESUMO

BACKGROUND: The major histocompatibility complex (MHC) genes are vital partners in the acquired immune processes of vertebrates. MHC diversity may be directly associated with population resistance to infectious pathogens. Here, we screened for polymorphisms in exons 2 and 3 of the IA1 and IA2 genes in 12 golden pheasant populations across the Chinese mainland to characterize their genetic variation levels, to understand the effects of historical positive selection and recombination in shaping class I diversity, and to investigate the genetic structure of wild golden pheasant populations. RESULTS: Among 339 individual pheasants, we identified 14 IA1 alleles in exon 2 (IA1-E2), 11 IA1-E3 alleles, 27 IA2-E2 alleles, and 28 IA2-E3 alleles. The non-synonymous substitution rate was significantly greater than the synonymous substitution rate at sequences in the IA2 gene encoding putative peptide-binding sites but not in the IA1 gene; we also found more positively selected sites in IA2 than in IA1. Frequent recombination events resulted in at least 9 recombinant IA2 alleles, in accordance with the intermingling pattern of the phylogenetic tree. Although some IA alleles are widely shared among studied populations, large variation occurs in the number of IA alleles across these populations. Allele frequency analysis across 2 IA loci showed low levels of genetic differentiation among populations on small geographic scales; however, significant genetic differentiation was observed between pheasants from the northern and southern regions of the Yangtze River. Both STRUCTURE analysis and F-statistic (F ST ) value comparison classified those populations into 2 major groups: the northern region of the Yangtze River (NYR) and the southern region of the Yangtze River (SYR). CONCLUSIONS: More extensive polymorphisms in IA2 than IA1 indicate that IA2 has undergone much stronger positive-selection pressure during evolution. Moreover, the recombination events detected between the genes and the intermingled phylogenetic pattern indicate that interlocus recombination accounts for much of the allelic variation in IA2. Analysis of the population differentiation implied that homogenous balancing selection plays an important part in maintaining an even distribution of MHC variations. The natural barrier of the Yangtze River and heterogeneous balancing selection might help shape the NYR-SYR genetic structure in golden pheasants.


Assuntos
Galliformes/genética , Genes MHC Classe I , Variação Genética , Recombinação Genética , Seleção Genética , Sequência de Aminoácidos , Animais , Evolução Molecular , Éxons , Frequência do Gene , Deriva Genética , Genética Populacional , Filogenia , Polimorfismo Genético
4.
BMC Evol Biol ; 13: 227, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24144019

RESUMO

BACKGROUND: Evaluating patterns of genetic variation is important to identify conservation units (i.e., evolutionarily significant units [ESUs], management units [MUs], and adaptive units [AUs]) in endangered species. While neutral markers could be used to infer population history, their application in the estimation of adaptive variation is limited. The capacity to adapt to various environments is vital for the long-term survival of endangered species. Hence, analysis of adaptive loci, such as the major histocompatibility complex (MHC) genes, is critical for conservation genetics studies. Here, we investigated 4 classical MHC class I genes (Aime-C, Aime-F, Aime-I, and Aime-L) and 8 microsatellites to infer patterns of genetic variation in the giant panda (Ailuropoda melanoleuca) and to further define conservation units. RESULTS: Overall, we identified 24 haplotypes (9 for Aime-C, 1 for Aime-F, 7 for Aime-I, and 7 for Aime-L) from 218 individuals obtained from 6 populations of giant panda. We found that the Xiaoxiangling population had the highest genetic variation at microsatellites among the 6 giant panda populations and higher genetic variation at Aime-MHC class I genes than other larger populations (Qinling, Qionglai, and Minshan populations). Differentiation index (FST)-based phylogenetic and Bayesian clustering analyses for Aime-MHC-I and microsatellite loci both supported that most populations were highly differentiated. The Qinling population was the most genetically differentiated. CONCLUSIONS: The giant panda showed a relatively higher level of genetic diversity at MHC class I genes compared with endangered felids. Using all of the loci, we found that the 6 giant panda populations fell into 2 ESUs: Qinling and non-Qinling populations. We defined 3 MUs based on microsatellites: Qinling, Minshan-Qionglai, and Daxiangling-Xiaoxiangling-Liangshan. We also recommended 3 possible AUs based on MHC loci: Qinling, Minshan-Qionglai, and Daxiangling-Xiaoxiangling-Liangshan. Furthermore, we recommend that a captive breeding program be considered for the Qinling panda population.


Assuntos
Genes MHC Classe I , Variação Genética , Repetições de Microssatélites , Ursidae/genética , Animais , Teorema de Bayes , China , Espécies em Perigo de Extinção , Genética Populacional , Haplótipos , Filogenia
5.
J Hered ; 104(6): 874-80, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24078679

RESUMO

Contrary to neutral markers, the major histocompatibility complex (MHC) can reflect the fitness and adaptive potential of a given species due to its association with the immune system. For this reason, the use of MHC in endangered wildlife management has increased greatly in recent years. Here, we isolated complementary DNA (cDNA) and genomic DNA (gDNA) sequences to characterize the MHC class II ß genes in Hainan Eld's deer (Cervus eldi hainanus), a highly endangered cervid, which recovered from a severe population bottleneck consisting of 26 animals. Analysis of 7 individuals revealed the presence of 3 DRB and 3 DQB putatively functional gDNA sequences. The Ceel-DRB and DQB sequences displayed high variability in exon 2, and most nonsynonymous substitutions were detected in this region. Phylogenetic analysis indicated that trans-species evolution of MHC class II ß might occur in the Cervinae subfamily. Comparison of the number of sequences between gDNA and cDNA revealed that all sequences isolated from the genome were detectable in the cDNA libraries derived from different tissues (including the liver, kidney, and spleen), suggesting none of these sequences were derived from silent genes or pseudogenes. Characterization of the MHC class II ß genes may lay the foundation for future studies on genetic structure, mate choice, and viability analysis in Hainan Eld's deer.


Assuntos
Cervos/genética , Espécies em Perigo de Extinção , Genes MHC da Classe II , Sequência de Aminoácidos , Animais , China , Cervos/classificação , Evolução Molecular , Éxons , Loci Gênicos , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
6.
Cell Res ; 23(9): 1091-105, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23917531

RESUMO

Crocodilians are diving reptiles that can hold their breath under water for long periods of time and are crepuscular animals with excellent sensory abilities. They comprise a sister lineage of birds and have no sex chromosome. Here we report the genome sequence of the endangered Chinese alligator (Alligator sinensis) and describe its unique features. The next-generation sequencing generated 314 Gb of raw sequence, yielding a genome size of 2.3 Gb. A total of 22 200 genes were predicted in Alligator sinensis using a de novo, homology- and RNA-based combined model. The genetic basis of long-diving behavior includes duplication of the bicarbonate-binding hemoglobin gene, co-functioning of routine phosphate-binding and special bicarbonate-binding oxygen transport, and positively selected energy metabolism, ammonium bicarbonate excretion and cardiac muscle contraction. Further, we elucidated the robust Alligator sinensis sensory system, including a significantly expanded olfactory receptor repertoire, rapidly evolving nerve-related cellular components and visual perception, and positive selection of the night vision-related opsin and sound detection-associated otopetrin. We also discovered a well-developed immune system with a considerable number of lineage-specific antigen-presentation genes for adaptive immunity as well as expansion of the tripartite motif-containing C-type lectin and butyrophilin genes for innate immunity and expression of antibacterial peptides. Multifluorescence in situ hybridization showed that alligator chromosome 3, which encodes DMRT1, exhibits significant synteny with chicken chromosome Z. Finally, population history analysis indicated population admixture 0.60-1.05 million years ago, when the Qinghai-Tibetan Plateau was uplifted.


Assuntos
Jacarés e Crocodilos/genética , Genoma/genética , Jacarés e Crocodilos/classificação , Jacarés e Crocodilos/metabolismo , Animais , Composição de Bases/genética , Sequência de Bases , Bicarbonatos/metabolismo , Transporte Biológico/genética , Elementos de DNA Transponíveis/genética , Metabolismo Energético/genética , Hemoglobinas/genética , Sistema Imunitário , Contração Muscular/genética , Visão Noturna/genética , Condutos Olfatórios/citologia , Opsinas/genética , Oxigênio/metabolismo , Análise de Sequência de DNA , Processos de Determinação Sexual/genética , Olfato/genética , Fatores de Transcrição/genética , Percepção Visual/genética
7.
PLoS One ; 8(7): e70229, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894623

RESUMO

Genetic variation plays a significant role in maintaining the evolutionary potential of a species. Comparing the patterns of adaptive and neutral diversity in extant populations is useful for understanding the local adaptations of a species. In this study, we determined the fine-scale genetic structure of 6 extant populations of the giant panda (Ailuropoda melanoleuca) using mtDNA and DNA fingerprints, and then overlaid adaptive variations in 6 functional Aime-MHC class II genes (DRA, DRB3, DQA1, DQA2, DQB1, and DQB2) on this framework. We found that: (1) analysis of the mtDNA and DNA fingerprint-based networks of the 6 populations identified the independent evolutionary histories of the 2 panda subspecies; (2) the basal (ancestral) branches of the fingerprint-based Sichuan-derived network all originated from the smallest Xiaoxiangling (XXL) population, suggesting the status of a glacial refuge in XXL; (3) the MHC variations among the tested populations showed that the XXL population exhibited extraordinary high levels of MHC diversity in allelic richness, which is consistent with the diversity characteristics of a glacial refuge; (4) the phylogenetic tree showed that the basal clades of giant panda DQB sequences were all occupied by XXL-specific sequences, providing evidence for the ancestor-resembling traits of XXL. Finally, we found that the giant panda had many more DQ alleles than DR alleles (33∶13), contrary to other mammals, and that the XXL refuge showed special characteristics in the DQB loci, with 7 DQB members of 9 XXL-unique alleles. Thus, this study identified XXL as a glacial refuge, specifically harboring the most number of primitive DQB alleles.


Assuntos
Adaptação Biológica , Evolução Biológica , Variação Genética , Ursidae/genética , Alelos , Animais , DNA Mitocondrial/genética , Frequência do Gene , Genes MHC da Classe II , Genótipo , Mapeamento Geográfico , Haplótipos , Dados de Sequência Molecular , Filogenia , Seleção Genética
8.
J Exp Zool B Mol Dev Evol ; 318(4): 294-307, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22821865

RESUMO

Père David's deer (Elaphurus davidianus) is a highly inbred species that arose from 11 founders but now comprises a population of about 3,000 individuals, making it interesting to investigate the adaptive variation of this species from the major histocompatibility complex (MHC) perspective. In this study, we isolated Elda-MHC class I loci using magnetic bead-based cDNA hybridization, and examined the molecular variations of these loci using single-strand conformation polymorphism (SSCP) and sequence analysis. We obtained seven MHC class I genes, which we designated F1, F12, G2, I7, AF, I8, and C1. Our analyses of stop codons, phylogenetic trees, amino acid conservation, and G+C content revealed that F1, F12, G2, and I7 were classical genes, AF was a nonclassical gene, and I8 and C1 were pseudogenes. Our subsequent molecular examinations showed that the diversity pattern in the Père David's deer was unusual. Most mammals have more polymorphic classical class I loci vs. the nonclassical and neutral genes. In contrast, the Père David's deer was found to be monomorphic at classical genes F1, F12, G2, and I7, dimorphic at the nonclassical AF gene, dimorphic at pseudogene I8, and tetramorphic at pseudogene C1. The adverse polymorphism patterns of Elda-I genes might provide evidence for selection too faster deplete MHC variation than drift in the bottlenecked populations, while the postbottleneck tetramorphism of the C1 pseudogene appears to be evidence of strong historical balancing selection.


Assuntos
Adaptação Biológica/genética , Cervos/genética , Genes MHC Classe I/genética , Variação Genética , Filogenia , Polimorfismo Genético/genética , Pseudogenes/genética , Animais , Composição de Bases , Sequência de Bases , China , Dados de Sequência Molecular , Polimorfismo Conformacional de Fita Simples , Análise de Sequência de DNA
9.
PLoS One ; 6(1): e14518, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21267075

RESUMO

The Père David's deer is a highly inbred, but recovered, species, making it interesting to consider their adaptive molecular evolution from an immunological perspective. Prior to this study, genomic sequencing was the only method for isolating all functional MHC genes within a certain species. Here, we report a novel protocol for isolating MHC class II loci from a species, and its use to investigate the adaptive evolution of this endangered deer at the level of multi-locus haplotypes. This protocol was designated "HURRAH" based on its various steps and used to estimate the total number of MHC class II loci. We confirmed the validity of this novel protocol in the giant panda and then used it to examine the Père David's deer. Our results revealed that the Père David's deer possesses nine MHC class II loci and therefore has more functional MHC class II loci than the eight genome-sequenced mammals for which full MHC data are currently available. This could potentially account at least in part for the strong survival ability of this species in the face of severe bottlenecking. The results from the HURRAH protocol also revealed that: (1) All of the identified MHC class II loci were monomorphic at their antigen-binding regions, although DRA was dimorphic at its cytoplasmic tail; and (2) these genes constituted two asymmetric functional MHC class II multi-locus haplotypes: DRA1*01 ∼ DRB1 ∼ DRB3 ∼ DQA1 ∼ DQB2 (H1) and DRA1*02 ∼ DRB2 ∼ DRB4 ∼ DQA2 ∼ DQB1 (H2). The latter finding indicates that the current members of the deer species have lost the powerful ancestral MHC class II haplotypes of nine or more loci, and have instead fixed two relatively weak haplotypes containing five genes. As a result, the Père David's deer are currently at risk for increased susceptibility to infectious pathogens.


Assuntos
Cervos/imunologia , Evolução Molecular , Genes MHC da Classe II/genética , Loci Gênicos/imunologia , Haplótipos/genética , Imunidade/genética , Adaptação Fisiológica/genética , Animais , Sítios de Ligação , Cervos/genética , Suscetibilidade a Doenças/imunologia , Espécies em Perigo de Extinção , Métodos , Ursidae
10.
J Exp Zool B Mol Dev Evol ; 314(3): 208-23, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19950128

RESUMO

Ample variations of the major histocompatibility complex (MHC) genes are essential for vertebrates to adapt to various environmental conditions. In this study, we investigated the genetic variations and evolutionary patterns of seven functional MHC class II genes (one DRA, two DRB, two DQA, and two DQB) of the giant panda. The results showed the presence of two monomorphic loci (DRA and DQB2) and five polymorphic loci with different numbers of alleles (seven at DRB1, six at DRB3, seven at DQA1, four at DQA2, six at DQB1). The presence of balancing selection in the giant panda was supported by the following pieces of evidence: (1) The observed heterozygosity was higher than expected. (2) Amino acid heterozygosity was significantly higher at antigen-binding sites (ABS) compared with non-ABS sequences. (3) The selection parameter omega (d(N)/d(S)) was significantly higher at ABS compared with non-ABS sequences. (4) Approximately 95.45% of the positively selected codons (P>0.95) were located at or adjacent to an ABS. Furthermore, this study showed that (1) The Qinling subspecies exhibited high omega values across each locus (all >1), supporting its extensive positive selection. (2) The Sichuan subspecies displayed small omega at DRB1 (omega<0.72) and DQA2 (omega<0.48), suggesting that these sites underwent strong purifying selection. (3) Intragenic recombination was detected in DRB1, DQA1, and DQB1. The molecular diversity in classic Aime-MHC class II genes implies that the giant panda had evolved relatively abundant variations in its adaptive immunity along the history of host-pathogen co-evolution. Collectively, these findings indicate that natural selection accompanied by recombination drives the contrasting diversity patterns of the MHC class II genes between the two studied subspecies of giant panda.


Assuntos
Genes MHC da Classe II/genética , Variação Genética , Recombinação Genética , Seleção Genética , Ursidae/genética , Ursidae/imunologia , Sequência de Aminoácidos , Animais , Frequência do Gene , Heterozigoto , Dados de Sequência Molecular , Alinhamento de Sequência , Especificidade da Espécie
11.
BMC Genet ; 8: 29, 2007 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-17555583

RESUMO

BACKGROUND: The giant panda (Ailuropoda melanoleuca) is one of the most endangered animals due to habitat fragmentation and loss. Although the captive breeding program for this species is now nearly two decades old, researches on the genetic background of such captive populations, especially on adaptive molecular polymorphism of major histocompatibility complex (MHC), are still limited. In this study, we characterized adaptive variation of the giant panda's MHC DQA gene by PCR amplification of its antigen-recognizing region (i.e. the exon 2) and subsequent single-strand conformational polymorphism (SSCP) and sequence analyses. RESULTS: The results revealed a low level of DQA exon 2 diversity in this rare animal, presenting 6 alleles from 61 giant panda individuals. The observed polymorphism was restricted to 9 amino acid substitutions, all of which occurred at and adjacent to positions forming the functionally important antigen-binding sites. All the samples were in Hardy-Weinberg proportions. A significantly higher rate of non-synonymous than synonymous substitutions at the antigen-binding sites indicated positive selection for diversity in the locus. CONCLUSION: The DQA allelic diversity of giant pandas was low relative to other vertebrates. Nonetheless, the pandas exhibited more alleles in DQA than those in DRB, suggesting the alpha chain genes would play a leading role when coping with certain pathogens and thus should be included in conservation genetic investigation. The microsatellite and MHC loci might predict long-term persistence potential and short-term survival ability, respectively. Consequently, it is recommended to utilize multiple suites of microsatellite markers and multiple MHC loci to detect overall genetic variation in order to design unbiased conservation strategies.


Assuntos
Genes MHC da Classe II , Variação Genética , Antígenos HLA-DQ/genética , Ursidae/genética , Alelos , Sequência de Aminoácidos , Animais , Éxons , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples , Ursidae/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA