Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioengineered ; 13(1): 1276-1287, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738865

RESUMO

Long non-coding RNAs (lncRNAs) are closely associated with the development of lung adenocarcinoma (LADC). The present study focused on the role of LINC00960 in LADC. miRNA and mRNA expression levels were detected using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Cellular functions were evaluated by MTT, colony formation, and Transwell assays, respectively. LINC00960 Luciferase and RNA pull-down assays were performed to clarify the interaction between miR-124a and LINC00960 or Recombinant Sphingosine Kinase 1 (SphK1). We observed that LINC00960 was overexpressed in LADC tumor tissues and cell lines. LINC00960 knockdown suppressed the proliferation, migration, and invasion of LADC cells. Moreover, LINC00960 sponged miR-124a to inhibit the SphK1/S1P pathway in LADC cells. LINC00960 knockdown markedly reduced the rate of tumor growth. The luciferase reporter assay results demonstrated an interaction between miR-124a and LINC00960 or SphK1. This interaction was confirmed using the RNA pull-down assay. In addition, miR-124a downregulation or SphK1 upregulation reversed the inhibitory effects of LINC00960 knockdown on cellular functions of LADC cells, suggesting that LINC00960 may be a potential therapeutic biomarker for LADC via the miR-124a/SphK1 axis. Accordingly, LINC00960 may be a potential therapeutic biomarker for LADC.


Assuntos
Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , RNA Longo não Codificante/genética , Regulação para Cima , Células A549 , Adenocarcinoma de Pulmão/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/genética , Masculino , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
2.
Front Plant Sci ; 11: 591852, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343597

RESUMO

Phytolith-occluded carbon (PhytOC), a promising long-term biogeochemical carbon sequestration mode, plays a crucial role in the global carbon cycle and the regulation of atmospheric CO2. Previous studies mostly focused on the estimation of the content and storage of PhytOC, while it remains unclear about how the management practices affect the PhytOC content and whether it varies with stand age. Moso bamboo (Phyllostachys heterocycla var. pubescens) has a great potential in carbon sequestration and is rich in PhytOC. Here, we selected four management treatments, including control (CK), compound fertilization (CF), silicon (Si) fertilization (SiF) (monosilicic acid can form phytoliths through silicification), and cut to investigate the variation of phytoliths and PhytOC contents in soil, leaves, and litters, and their storage in Moso bamboo forests. In soil, the SiF fertilizer treatment significantly (P < 0.05) increased phytolith content, PhytOC content, and storage compared to CK, while there were no significant differences between the treatments of CF and cut. In leaf, compared with CK, phytolith content of the second-degree leaves under SiF and the first-degree leaves under cut treatment significantly increased, and the three treatments significantly increased PhytOC storage for leaves with three age classes. In litter, the phytolith and PhytOC contents under the three treatments were not significantly different from that under the CK treatment. The PhytOC storage increased by 19.33% under SiF treatment, but significantly decreased by 40.63% under the CF treatment. For the entire Moso bamboo forest ecosystems, PhytOC storage of all the three management treatments increased compared with CK, with the largest increase by 102% under the SiF treatment. The effects of management practices on the accumulation of PhytOC varied with age. Our study implied that Si fertilization has a greater potential to significantly promote the capacity of sequestration of carbon in Moso bamboo forests.

3.
Environ Pollut ; 249: 794-800, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30951963

RESUMO

Bioelectrochemical systems (BESs) have been widely investigated for recalcitrant waste treatment mainly because of their waste removal effectiveness. Electroactive microbes (EMs) have long been thought to contribute to the high effectiveness by interacting with electrodes via electron chains. However, this work demonstrated the dispensable role of EMs for enhanced recalcitrant contamination degradation in BESs. We revealed enhanced p-fluoronitrobenzene (p-FNB) degradation in a BES by observing a defluorination efficiency that was three times higher than that in biodegradation or electrochemical processes. Such an improvement was achieved by the collaborative roles of electrode biofilms and planktonic microbes, as their individual contributions to p-FNB degradation were found to be similarly stimulated by electricity. However, no bioelectrochemical activity was found in either the electrode biofilms or the planktonic microbes during stimulated p-FNB degradation; because no biocatalytically reductive or oxidative turnovers were observed on cyclic voltammetry curves. The non-involvement of EMs was further proven by the similar microbial community evolution for biofilms and planktonic microbes. In summary, we proposed a mechanism for indirect electrical stimulation of microbial metabolism by electrochemically generating the active mediator p-fluoroaniline (p-FA) and further degradation by a sequential combination of electrochemical p-FNB reduction and biological p-FA oxidation by non-EMs.


Assuntos
Bactérias/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Biocatálise , Biodegradação Ambiental , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos , Eletricidade , Eletrodos/microbiologia , Nitrobenzenos/metabolismo , Oxirredução , Eliminação de Resíduos Líquidos/instrumentação
4.
Front Microbiol ; 9: 2760, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555429

RESUMO

We develop a high-performance anode formed from carbonized cow dung for bioelectrochemical systems. Thermal gravimetric analysis showed that the CD carbonization process started at 300°C and ended at approximately 550°C; the weight was reduced by 51%. After a heat-treatment at 800°C for 2 h, the treated CD featured a good conductivity and a high specific surface area. The maximum current density of 11.74 ± 0.41 A m-2 was achieved by CD anode (heated at 800°C), which remained relatively stable from more than 10 days. This study shows that a valuable anode material can be produced through conversion of CD by high-temperature carbonization. This approach provides a new way to alleviate environmental problems associated with CD.

5.
Biochem Biophys Res Commun ; 503(4): 2333-2339, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-29964008

RESUMO

We investigated the role of a disintegrin and metalloproteinase 17 (ADAM17) in chemo resistance, and to clarify the mechanism underlying reverse of L-OHP resistance by knockdown of ADAM17. CRC tissues with corresponding adjacent normal tissues were collected. The mRNA and protein expression of ADAM17 in tissues were detected by RT-qPCR, immunohistochemistry and Western blot. The prognostic impact of ADAM17 expression were then validated in TCGA database to confirm the results. Resistance to oxaliplatin was induced in HCT-8 (HCT-8/L-OHP) colorectal cancer cell line by exposing cell to increasing concentrations of L-OHP. MTT were used to evaluate the resistance to L-OHP. Subsequently, Knockdown of ADAM17 in HCT-8 and HCT-8/L-OHP cells to explore the mechanism through which ADAM17 shRNA reverses L-OHP resistance. Our result showed that ADAM17 was higher expression in the cancerous tissue and related to the chemosensitivity. Moreover, ADAM17 shRNA, AG1478 and LY294002 could inhibit cell proliferation, induce apoptosis and increase oxaliplatin sensitivity in HCT-8/L-OHP and parental colorectal cancer cell line, but nonsense shRNA did not show this effect. Western blot analysis further confirmed that EGFR/PI3K/AKT signaling pathway is involved in ADAM17 shRNA inhibiting proliferation and chemosensitivity of HCT-8/L-OHP and HCT-8 cells. The present study provides the evidence that downregulation of ADAM17 could increase the sensitivity to chemotherapy, inhibit cell proliferation, induce apoptosis, and reverse oxaliplatin resistance via suppression of the EGFR/PI3K/AKT signaling pathway in CRC.


Assuntos
Proteína ADAM17/genética , Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Técnicas de Silenciamento de Genes , Oxaliplatina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína ADAM17/metabolismo , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação para Baixo/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Oxaliplatina/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
6.
J Hazard Mater ; 354: 27-32, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29723760

RESUMO

Microbial fuel cells (MFCs) are promising for converting biomass energy into electricity, and have attracted much research interest. However, few inexpensive high-performance anode materials for MFCs exist. In this study, MFC anodes composed of sewage sludge and different contents of fly ash (0%, 20%, 40%, 60%, and 80%) are fabricated via a one-step carbonization method. The maximum current density of 25.5 A m-2 is achieved using the electrode with 20% fly ash, which is 37.5% higher than that of the electrode without fly ash. The improved anode performance is attributed to its good hydrophilicity, which is indicated by its water contact angle of less than 60°, facile adsorption of exoelectrogens, low electron transfer resistance, and good biocompatibility. In addition, the mechanical strength of the electrode with 20% fly ash is approximately 18 times that of the electrode without fly ash. This study reveals a promising method to fabricate high-performance MFC anodes and sheds light on the future development of MFCs using abundant municipal solid waste products.


Assuntos
Fontes de Energia Bioelétrica , Cinza de Carvão , Esgotos , Biofilmes , Eletroquímica , Eletrodos/microbiologia
7.
Sci Total Environ ; 635: 45-52, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29660726

RESUMO

Conversion of sewage sludge (SS) into value-added material has garnered increasing attention due to its potential applications. In this study, we propose a new application of the sewage sludge-derived carbon (SSC) as an electrode without binder in microbial fuel cells (MFCs). SS was firstly converted into SSC monoliths by methane chemical vapor method at different temperature (600, 800, 1000 or 1200°C). Scanning electron microscopy images showed that carbon micro-wires were present on the surfaces of the samples prepared at 1000 and 1200°C. The results showed that it was beneficial for converting sludge into a highly conductive electrode and increasing carbon content of the electrode at higher temperatures, thereby improving the current generation. The conductivity results show that a higher temperature favors the conversion of sludge into a highly conductive electrode. The MFC using an SSC anode processed at 1200°C generated the maximum power density of 2228mWm-2 and the maximum current density of 14.2Am-2. This value was 5 times greater than that generated by an MFC equipped with a graphite anode. These results present a promising means of converting SS into electrode materials.


Assuntos
Fontes de Energia Bioelétrica , Metano/química , Esgotos/química , Eletrodos , Incineração , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA