Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 30(5): 1334-1348, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36869179

RESUMO

After a skin injury, keratinocytes switch from a state of homeostasis to one of regeneration leading to the reconstruction of the epidermal barrier. The regulatory mechanism of gene expression underpinning this key switch during human skin wound healing is enigmatic. Long noncoding RNAs (lncRNAs) constitute a new horizon in the understanding of the regulatory programs encoded in the mammalian genome. By comparing the transcriptome of an acute human wound and skin from the same donor as well as keratinocytes isolated from these paired tissue samples, we generated a list of lncRNAs showing changed expression in keratinocytes during wound repair. Our study focused on HOXC13-AS, a recently evolved human lncRNA specifically expressed in epidermal keratinocytes, and we found that its expression was temporally downregulated during wound healing. In line with its enrichment in suprabasal keratinocytes, HOXC13-AS was found to be increasingly expressed during keratinocyte differentiation, but its expression was reduced by EGFR signaling. After HOXC13-AS knockdown or overexpression in human primary keratinocytes undergoing differentiation induced by cell suspension or calcium treatment and in organotypic epidermis, we found that HOXC13-AS promoted keratinocyte differentiation. Moreover, RNA pull-down assays followed by mass spectrometry and RNA immunoprecipitation analysis revealed that mechanistically HOXC13-AS sequestered the coat complex subunit alpha (COPA) protein and interfered with Golgi-to-endoplasmic reticulum (ER) molecular transport, resulting in ER stress and enhanced keratinocyte differentiation. In summary, we identified HOXC13-AS as a crucial regulator of human epidermal differentiation.


Assuntos
RNA Longo não Codificante , Animais , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Pele/metabolismo , Queratinócitos/metabolismo , Epiderme/metabolismo , Diferenciação Celular/fisiologia , Fatores de Transcrição/metabolismo , Retículo Endoplasmático/metabolismo , Mamíferos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA