Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 21(5): 428-441, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31841241

RESUMO

An algorithm for the simulation and evaluation of cyclic voltammetry (CV) at macroporous electrodes such as felts, foams, and layered structures is presented. By considering 1D, 2D, and 3D arrays of electrode sheets, cylindrical microelectrodes, hollow-cylindrical microelectrodes, and hollow-spherical microelectrodes the internal diffusion domains of the macroporous structures are approximated. A universal algorithm providing the time-dependent surface concentrations of the electrochemically active species, required for simulating cyclic voltammetry responses of the individual planar, cylindrical, and spherical microelectrodes, is presented as well. An essential ingredient of the algorithm, which is based on Laplace integral transformation techniques, is the use of a modified Talbot contour for the inverse Laplace transformation. It is demonstrated that first-order homogeneous chemical kinetics preceding and/or following the electrochemical reaction and electrochemically active species with non-equal diffusion coefficients can be included in all diffusion models as well. The proposed theory is supported by experimental data acquired for a reference reaction, the oxidation of [Fe(CN)6 ]4- at platinum electrodes as well as for a technically relevant reaction, the oxidation of VO2+ at carbon felt electrodes. Based on our calculation strategy, we provide a powerful open source tool for simulating and evaluating CV data implemented into a Python graphical user interface (GUI).

2.
Materials (Basel) ; 12(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443453

RESUMO

Operando laboratory X-ray radiographies were carried out for imaging of two different silver-based gas diffusion electrodes containing an electroconductive Ni mesh structure, one gas diffusion electrode composed of 95 wt.% Ag and 5 wt.% polytetrafluoroethylene and one composed of 97 wt.% Ag and 3 wt.% polytetrafluoroethylene, under different operating parameters. Thereby, correlations of their electrochemical behavior and the transport of the 30 wt.% NaOH electrolyte through the gas diffusion electrodes were revealed. The work was divided into two parts. In the first step, the microstructure of the gas diffusion electrodes was analyzed ex situ by a combination of focused ion beam technology and synchrotron as well as laboratory X-ray tomography and radiography. In the second step, operando laboratory X-ray radiographies were performed during chronoamperometric measurements at different potentials. The combination of the ex situ microstructural analyses and the operando measurements reveals the impact of the microstructure on the electrolyte transport through the gas diffusion electrodes. Hence, an impact of the Ni mesh structure within the gas diffusion electrode on the droplet formation could be shown. Moreover, it could be observed that increasing overpotentials cause increasing electrolyte transport velocities and faster droplet formation due to electrowetting. In general, higher electrolyte transport velocities were found for the gas diffusion electrode with 97 wt.% Ag in contrast to that with 95 wt.% Ag.

3.
Materials (Basel) ; 12(8)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003446

RESUMO

Oxygen-depolarized cathodes are a novel concept to be used in chlor-alkali electrolysis in order to generate significant energy savings. In these porous gas diffusion electrodes, hydrophilic and catalytically active microsized silver grains and a hydrophobic polytetrafluoroethylene cobweb structure are combined to obtain the optimum amount of three-phase boundaries between the highly alkaline electrolyte and the oxygen gas phase to achieve high current densities. However, the direct correlation between specific electrode structure and electrochemical performance is difficult. In this work, we report on the successful design and adaptation of an in-operando cell for X-ray (micro-computed tomography, synchrotron) and neutron imaging of an operating oxygen-depolarized cathode under realistic operation conditions, enabling the investigation of the electrolyte invasion into, and distribution inside, the porous electrode for the first time.

4.
Phys Chem Chem Phys ; 21(18): 9061-9068, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30843917

RESUMO

In order to quantitatively investigate the kinetic performance and the pore size distribution of carbon felt electrodes for the application in vanadium redox flow batteries, the theory of cyclic voltammetry (CV) is derived for a random network of cylindrical microelectrodes on the base of convolutive modeling. In this context we present an algorithm based on the use of a modified Talbot contour for inverse Laplace transformation, providing the mass transfer functions required for the calculation of the CV responses in external cylindrical finite diffusion space. First-order homogenous chemical kinetics preceding and/or following the electrochemical reactions are implemented in this algorithm as well. The VO2+ oxidation is investigated as model reaction at pristine and electrochemically aged commercial carbon felt electrodes. A fit of simulated data to experimental data clearly shows that an electrochemical aging predominantly affects the kinetics of the electron transfer reaction and that internal electrode surfaces and pore size distributions remain constant. The estimated pore size distributions are in excellent agreement with porosimetry measurements, validating our theory and providing a new strategy to determine electrode porosities and electrode kinetics simultaneously via CV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA