Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
EJNMMI Radiopharm Chem ; 8(1): 35, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889361

RESUMO

BACKGROUND: The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biannual highlight commentary to update the readership on trends in the field of radiopharmaceutical development. MAIN BODY: This selection of highlights provides commentary on 21 different topics selected by each coauthoring Editorial Board member addressing a variety of aspects ranging from novel radiochemistry to first-in-human application of novel radiopharmaceuticals. CONCLUSION: Trends in radiochemistry and radiopharmacy are highlighted. Hot topics cover the entire scope of EJNMMI Radiopharmacy and Chemistry, demonstrating the progress in the research field in many aspects.

4.
J Med Chem ; 66(4): 2330-2346, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36787643

RESUMO

The excitatory amino acid transporter 2 (EAAT2) plays a key role in the clearance and recycling of glutamate - the major excitatory neurotransmitter in the mammalian brain. EAAT2 loss/dysfunction triggers a cascade of neurodegenerative events, comprising glutamatergic excitotoxicity and neuronal death. Nevertheless, our current knowledge regarding EAAT2 in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD), is restricted to post-mortem analysis of brain tissue and experimental models. Thus, detecting EAAT2 in the living human brain might be crucial to improve diagnosis/therapy for ALS and AD. This perspective article describes the role of EAAT2 in physio/pathological processes and provides a structure-activity relationship of EAAT2-binders, bringing two perspectives: therapy (activators) and diagnosis (molecular imaging tools).


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Animais , Humanos , Transportador 2 de Aminoácido Excitatório/metabolismo , Doenças Neurodegenerativas/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Química Farmacêutica , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Mamíferos/metabolismo
5.
Chem Rev ; 123(1): 105-229, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36399832

RESUMO

The presence of positron emission tomography (PET) centers at most major hospitals worldwide, along with the improvement of PET scanner sensitivity and the introduction of total body PET systems, has increased the interest in the PET tracer development using the short-lived radionuclides carbon-11. In the last few decades, methodological improvements and fully automated modules have allowed the development of carbon-11 tracers for clinical use. Radiolabeling natural compounds with carbon-11 by substituting one of the backbone carbons with the radionuclide has provided important information on the biochemistry of the authentic compounds and increased the understanding of their in vivo behavior in healthy and diseased states. The number of endogenous and natural compounds essential for human life is staggering, ranging from simple alcohols to vitamins and peptides. This review collates all the carbon-11 radiolabeled endogenous and natural exogenous compounds synthesised to date, including essential information on their radiochemistry methodologies and preclinical and clinical studies in healthy subjects.


Assuntos
Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Humanos , Radioisótopos de Carbono/química , Radioquímica
6.
Chem Sci ; 13(12): 3556-3562, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35432866

RESUMO

Hydrogen [11C]cyanide ([11C]HCN) is a versatile 11C-labelling agent for the production of 11C-labelled compounds used for positron emission tomography (PET). However, the traditional method for [11C]HCN production requires a dedicated infrastructure, limiting accessibility to [11C]HCN. Herein, we report a simple and efficient [11C]HCN production method that can be easily implemented in 11C production facilities. The immediate production of [11C]HCN was achieved by passing gaseous [11C]methyl iodide ([11C]CH3I) through a small two-layered reaction column. The first layer contained an N-oxide and a sulfoxide for conversion of [11C]CH3I to [11C]formaldehyde ([11C]CH2O). The [11C]CH2O produced was subsequently converted to [11C]HCN in a second layer containing hydroxylamine-O-sulfonic acid. The yield of [11C]HCN produced by the current method was comparable to that of [11C]HCN produced by the traditional method. The use of oxymatrine and diphenyl sulfoxide for [11C]CH2O production prevented deterioration of the molar activity of [11C]HCN. Using this method, compounds labelled with [11C]HCN are now made easily accessible for PET synthesis applications using readily available labware, without the need for the 'traditional' dedicated cyanide synthesis infrastructure.

7.
EJNMMI Radiopharm Chem ; 6(1): 34, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34628570

RESUMO

This guideline on molar activity (Am) and specific activity (As) focusses on small molecules, peptides and macromolecules radiolabelled for diagnostic and therapeutic applications. In this guideline we describe the definition of Am and As, and how these measurements must be standardised and harmonised. Selected examples highlighting the importance of Am and As in imaging studies of saturable binding sites will be given, and the necessity of using appropriate materials and equipment will be discussed. Furthermore, common Am pitfalls and remedies are described. Finally, some aspects of Am in relation the emergence of a new generation of highly sensitive PET scanners will be discussed.

8.
Nucl Med Commun ; 42(9): 1024-1038, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34397988

RESUMO

OBJECTIVES: To construct and evaluate a 64Cu production system that minimises the amount of costly 64Ni, radionuclidic impurities and nonradioactive metal contamination and maximises radiochemical and radionuclidic purity and molar activity; and to report analytical and quality control methods that can be used within typical PET radiochemistry production facilities to measure metal ion concentrations and radiometal molar activities. METHODS: Low volume was ensured by dissolving the irradiated nickel in a low volume of hydrochloric acid (<1 mL) using the concave gold target backing as a reaction vessel in a custom-built target holder. Removal of contaminating 55Co and nonradioactive trace metals was ensured by adding an intermediate hydrochloric acid concentration step during the conventional ion-exchange elution process. The radionuclidic purity of the product was determined by half-life measurements, gamma spectroscopy and ion radiochromatography. Trace metal contamination and molar activity were determined by ion chromatography. RESULTS AND CONCLUSIONS: On a small scale, suitable for preclinical research, the process produced typically 3.2 GBq 64Cu in 2 mL solution from 9.4 ± 2.1 mg nickel-64 electroplated onto a gold target backing. The product had high molar activity (121.5 GBq/µmol), was free of trace metal contamination detectable by ion chromatography and has been used for many preclinical and clinical PET imaging applications.


Assuntos
Ciclotrons , Tomografia por Emissão de Pósitrons , Radioisótopos de Cobre , Radioquímica
9.
Org Biomol Chem ; 19(32): 6916-6925, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34319335

RESUMO

Positron emission tomography (PET) is a powerful functional imaging technique that requires the use of positron emitting nuclides. Carbon-11 (11C) radionuclide has several advantages related to the ubiquity of carbon atoms in biomolecules and the conservation of pharmacological properties of the molecule upon isotopic exchange of carbon-12 with carbon-11. However, due to the short half-life of 11C (20.4 minutes) and the low scale with which it is produced by the cyclotron (sub-nanomolar concentrations), quick, robust and chemospecific radiolabelling strategies are required to minimise activity loss during incorporation of the 11C nuclide into the final product. To address some of the constraints of working with 11C, the use of silicon-based chemistry for 11C-labelling was proposed as a rapid and effective route for radiopharmaceutical production due to the broad applicability and high efficiency showed in organic chemistry. In the past years several organic chemistry methodologies have been successfully applied to 11C-chemistry. In this short review, we examine silicon-based 11C-chemistry, with a particular emphasis on the radiotracers that have been successfully produced and potential improvements to further expand the applicability of silicon in radiochemistry.

10.
Chem Commun (Camb) ; 57(40): 4962-4965, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33876157

RESUMO

Nitrogen-13 is an attractive but under-used PET radionuclide for labelling molecules of biological and pharmaceutical interest, complementing other PET radionuclides. Its short half-life (t1/2 = 9.97 min) imposes synthetic challenges, but we have expanded the hitherto limited pool of 13N labelling strategies and tracers by adapting the multicomponent Hantzsch condensation reaction to prepare a library of 13N-labelled 1,4-dihydropyridines from [13N]ammonia, including the widely-used drug nifedipine. This represents a key advance in 13N PET radiochemistry, and will serve to underpin the renewed interest in clinical opportunities offered by short-lived PET tracers.

11.
J Labelled Comp Radiopharm ; 64(6): 237-242, 2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-33665888

RESUMO

A copper-catalysed radiosynthesis of carbon-11 radiolabelled carboxylic acids was developed by reacting terminal alkynes and cyclotron-produced carbon-11 carbon dioxide ([11 C]CO2 ) in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). A small library of 11 C-labelled propiolic acid derivatives were obtained with a total synthesis time of 15 min from end of bombardment (EOB) with a (non-isolated) radiochemical yield ranging from 7% to 28%.


Assuntos
Dióxido de Carbono
12.
EJNMMI Res ; 10(1): 146, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33270177

RESUMO

PURPOSE: The conversion of synaptic glutamate to glutamine in astrocytes by glutamine synthetase (GS) is critical to maintaining healthy brain activity and may be disrupted in several brain disorders. As the GS catalysed conversion of glutamate to glutamine requires ammonia, we evaluated whether [13N]ammonia positron emission tomography (PET) could reliability quantify GS activity in humans. METHODS: In this test-retest study, eight healthy volunteers each received two dynamic [13N]ammonia PET scans on the morning and afternoon of the same day. Each [13N]ammonia scan was preceded by a [15O]water PET scan to account for effects of cerebral blood flow (CBF). RESULTS: Concentrations of radioactive metabolites in arterial blood were available for both sessions in five of the eight subjects. Our results demonstrated that kinetic modelling was unable to reliably distinguish estimates of the kinetic rate constant k3 (related to GS activity) from K1 (related to [13N]ammonia brain uptake), and indicated a non-negligible back-flux of [13N] to blood (k2). Model selection favoured a reversible one-tissue compartmental model, and [13N]ammonia K1 correlated reliably (r2 = 0.72-0.92) with [15O]water CBF. CONCLUSION: The [13N]ammonia PET method was unable to reliably estimate GS activity in the human brain but may provide an alternative index of CBF.

13.
Trends Neurosci ; 43(12): 935-938, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33131922

RESUMO

A substantial fraction of coronavirus disease 2019 (COVID-19) patients experience neurological manifestations. Nevertheless, brain changes caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain largely unknown. Here, we provide a brief overview of positron emission tomography (PET) applications that could advance current understanding of CNS pathophysiological alterations associated with SARS-CoV-2 infection.


Assuntos
Encéfalo/diagnóstico por imagem , COVID-19/diagnóstico por imagem , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/metabolismo , Encéfalo/patologia , COVID-19/complicações , COVID-19/fisiopatologia , Humanos
14.
EJNMMI Radiopharm Chem ; 5(1): 20, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870409

RESUMO

BACKGROUND: Formamides are common motifs of biologically-active compounds (e.g. formylated peptides) and are frequently employed as intermediates to yield a number of other functional groups. A rapid, simple and reliable route to [carbonyl-11C]formamides would enable access to this important class of compounds as in vivo PET imaging agents. RESULTS: A novel radiolabelling strategy for the synthesis of carbon-11 radiolabelled formamides ([11C]formamides) is presented. The reaction proceeded with the conversion of a primary amine to the corresponding [11C]isocyanate using cyclotron-produced [11C]CO2, a phosphazene base (2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine, BEMP) and phosphoryl chloride (POCl3). The [11C]isocyanate was subsequently reduced to [11C]formamide using sodium borohydride (NaBH4). [11C]Benzyl formamide was obtained with a radiochemical yield (RCY) of 80% in 15 min from end of cyclotron target bombardment and with an activity yield of 12%. This novel method was applied to the radiolabeling of aromatic and aliphatic formamides and the chemotactic amino acid [11C]formyl methionine (RCY = 48%). CONCLUSIONS: This study demonstrates the feasibility of 11C-formylation of primary amines with the primary synthon [11C]CO2. The reactivity is proportional to the nucleophilicity of the precursor amine. This novel method can be used for the production of biomolecules containing a radiolabelled formyl group.

15.
Mol Imaging ; 19: 1536012120936397, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32907484

RESUMO

This meeting report summarizes a Consultants Meeting that was held at International Atomic Energy Agency headquarters in Vienna to provide an update on radionuclide imaging for neuroscience applications.


Assuntos
Cintilografia/tendências , Humanos , Neuroimagem , Neurociências , Compostos Radiofarmacêuticos/química , Pesquisa Translacional Biomédica
17.
Nucl Med Biol ; 88-89: 24-33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32683248

RESUMO

INTRODUCTION: A sufficient dietary intake of the vitamin niacin is essential for normal cellular function. Niacin is transported into the cells by the monocarboxylate transporters: sodium-dependent monocarboxylate transporter (SMCT1 and SMCT2) and monocarboxylate transporter (MCT1). Despite the importance of niacin in biological systems, surprisingly, its in vivo biodistribution and trafficking in living organisms has not been reported. The availability of niacin radiolabelled with the short-lived positron emitting radionuclide carbon-11 ([11C]niacin) would enable the quantitative in vivo study of this endogenous micronutrient trafficking using in vivo PET molecular imaging. METHODS: [11C]Niacin was synthesised via a simple one-step, one-pot reaction in a fully automated system using cyclotron-produced carbon dioxide ([11C]CO2) and 3-pyridineboronic acid ester via a copper-mediated reaction. [11C]Niacin was administered intravenously in healthy anaesthetised mice placed in a high-resolution nanoScan PET/CT scanner. To further characterize in vivo [11C]niacin distribution in vivo, mice were challenged with either niacin or AZD3965, a potent and selective MCT1 inhibitor. To examine niacin gastrointestinal absorption and body distribution in vivo, no-carrier-added (NCA) and carrier-added (CA) [11C]niacin formulations were administered orally. RESULTS: Total synthesis time including HPLC purification was 25 ± 1 min from end of [11C]CO2 delivery. [11C]Niacin was obtained with a decay corrected radiochemical yield of 17 ± 2%. We report a rapid radioactivity accumulation in the kidney, heart, eyes and liver of intravenously administered [11C]niacin which is consistent with the known in vivo SMCTs and MCT1 transporter tissue expression. Pre-administration of non-radioactive niacin decreased kidney-, heart-, ocular- and liver-uptake and increased urinary excretion of [11C]niacin. Pre-administration of AZD3965 selectively decreased [11C]niacin uptake in MCT1-expressing organs such as heart and retina. Following oral administration of NCA [11C]niacin, a high level of radioactivity accumulated in the intestines. CA abolished the intestinal accumulation of [11C]niacin resulting in a preferential distribution to all tissues expressing niacin transporters and the excretory organs. CONCLUSIONS: Here, we describe the efficient preparation of [11C]niacin as PET imaging agent for probing the trafficking of nutrient demand in healthy rodents by intravenous and oral administration, providing a translatable technique to enable the future exploration of niacin trafficking in humans and to assess its application as a research tool for metabolic disorders (dyslipidaemia) and cancer.


Assuntos
Radioisótopos de Carbono/farmacocinética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Niacina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Animais , Transporte Biológico , Radioisótopos de Carbono/análise , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Especificidade de Órgãos , Compostos Radiofarmacêuticos/análise , Distribuição Tecidual
18.
J Med Chem ; 63(15): 8265-8275, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32658479

RESUMO

The water-soluble vitamin biotin is essential for cellular growth, development, and well-being, but its absorption, distribution, metabolism, and excretion are poorly understood. This paper describes the radiolabeling of biotin with the positron emission tomography (PET) radionuclide carbon-11 ([11C]biotin) to enable the quantitative study of biotin trafficking in vivo. We show that intravenously administered [11C]biotin is quickly distributed to the liver, kidneys, retina, heart, and brain in rodents-consistent with the known expression of the biotin transporter-and there is a surprising accumulation in the brown adipose tissue (BAT). Orally administered [11C]biotin was rapidly absorbed in the small intestine and swiftly distributed to the same organs. Preadministration of nonradioactive biotin inhibited organ uptake and increased excretion. [11C]Biotin PET imaging therefore provides a dynamic in vivo map of transporter-mediated biotin trafficking in healthy rodents. This technique will enable the exploration of biotin trafficking in humans and its use as a research tool for diagnostic imaging of obesity/diabetes, bacterial infection, and cancer.


Assuntos
Biotina/farmacocinética , Tomografia por Emissão de Pósitrons , Complexo Vitamínico B/farmacocinética , Animais , Biotina/administração & dosagem , Radioisótopos de Carbono/administração & dosagem , Radioisótopos de Carbono/farmacocinética , Feminino , Masculino , Camundongos Endogâmicos BALB C , Distribuição Tecidual , Complexo Vitamínico B/administração & dosagem
19.
Chem Commun (Camb) ; 56(34): 4668-4671, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32211652

RESUMO

A novel carboxylation radiosynthesis methodology is described starting from cyclotron-produced [11C]CO2 and fluoride-activated silane derivatives. Six carbon-11 labelled carboxylic acids were obtained from their corresponding trimethylsilyl and trialkoxysilyl precursors in a one-pot labelling methodology. The radiochemical yields ranged from 19% to 93% within 12 minutes post [11C]CO2 delivery with a trapping efficiency of 21-89%.

20.
Future Med Chem ; 12(6): 511-521, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32100545

RESUMO

Aim: The receptor for advanced glycation end products (RAGE) is a viable target for early Alzheimer's disease (AD) diagnosis using positron emission tomography (PET) as RAGE overexpression precedes Aß plaque formation. The development of a carbon-11 analog of FPS-ZM1 (N-benzyl-4-chloro-N-cyclohexylbenzamide, [11C]FPS-ZM1), possessing nanomolar affinity for RAGE, may enable the imaging of RAGE for early AD detection. Methodology & results: Herein we report an optimized [11C]CO2-to-[11C]CO chemical conversion for the synthesis of [11C]FPS-ZM1 and in vitro brain autoradiography. The [11C]CO2-to-[11C]CO conversion via 11C-silanecarboxylate derivatives was achieved with a 57% yield within 30 s from end of [11C]CO2 delivery. [11C]FPS-ZM1 was obtained with a decay-corrected isolated radiochemical yield of 9.5%. Conclusion: [11C]FPS-ZM1 distribution in brain tissues of wild-type versus transgenic AD model mice showed no statistically significant difference and high nondisplaceable binding.


Assuntos
Benzamidas/química , Dióxido de Carbono/análise , Monóxido de Carbono/análise , Tomografia por Emissão de Pósitrons , Receptor para Produtos Finais de Glicação Avançada/análise , Animais , Dióxido de Carbono/metabolismo , Monóxido de Carbono/metabolismo , Radioisótopos de Carbono , Camundongos , Camundongos Transgênicos , Estrutura Molecular , Receptor para Produtos Finais de Glicação Avançada/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA