Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 75(13): 3797-3817, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38630561

RESUMO

The growing demand for sustainable solutions in agriculture, which are critical for crop productivity and food quality in the face of climate change and the need to reduce agrochemical usage, has brought biostimulants into the spotlight as valuable tools for regenerative agriculture. With their diverse biological activities, biostimulants can contribute to crop growth, nutrient use efficiency, and abiotic stress resilience, as well as to the restoration of soil health. Biomolecules include humic substances, protein lysates, phenolics, and carbohydrates have undergone thorough investigation because of their demonstrated biostimulant activities. Here, we review the process of the discovery and development of extract-based biostimulants, and propose a practical step-by-step pipeline that starts with initial identification of biomolecules, followed by extraction and isolation, determination of bioactivity, identification of active compound(s), elucidation of mechanisms, formulation, and assessment of effectiveness. The different steps generate a roadmap that aims to expedite the transfer of interdisciplinary knowledge from laboratory-scale studies to pilot-scale production in practical scenarios that are aligned with the prevailing regulatory frameworks.


Assuntos
Produtos Agrícolas , Produtos Agrícolas/crescimento & desenvolvimento , Substâncias Húmicas/análise
2.
J Exp Bot ; 75(11): 3248-3258, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38477707

RESUMO

T-DNA transformation is prevalent in Arabidopsis research and has expanded to a broad range of crops and model plants. While major progress has been made in optimizing the Agrobacterium-mediated transformation process for various species, a variety of pitfalls associated with the T-DNA insertion may lead to the misinterpretation of T-DNA mutant analysis. Indeed, secondary mutagenesis either on the integration site or elsewhere in the genome, together with epigenetic interactions between T-DNA inserts or frequent genomic rearrangements, can be tricky to differentiate from the effect of the knockout of the gene of interest. These are mainly the case for genomic rearrangements that become balanced in filial generations without consequential phenotypical defects, which may be confusing particularly for studies that aim to investigate fertility and gametogenesis. As a cautionary note to the plant research community studying gametogenesis, we here report an overview of the consequences of T-DNA-induced secondary mutagenesis with emphasis on the genomic imbalance on gametogenesis. Additionally, we present a simple guideline to evaluate the T-DNA-mutagenized transgenic lines to decrease the risk of faulty analysis with minimal experimental effort.


Assuntos
DNA Bacteriano , DNA Bacteriano/genética , Mutagênese , Arabidopsis/genética , Plantas Geneticamente Modificadas/genética , Reprodução/genética
3.
Microb Biotechnol ; 17(2): e14422, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38380980

RESUMO

Microbe-plant interactions in the root zone not only shape crop performance in soil but also in hydroponic cultivation systems. The biological and physicochemical properties of the plant-growing medium determine the root-associated microbial community and influence bacterial inoculation effectiveness, which affects plant growth. This study investigated the combined impact of plant-growing media composition and bacterial community inoculation on the root-associated bacterial community of hydroponically grown lettuce (Lactuca sativa L.). Ten plant-growing media were composed of varying raw materials, including black peat, white peat, coir pith, wood fibre, composted bark, green waste compost, perlite and sand. In addition, five different bacterial community inocula (BCI S1-5) were collected from the roots of lettuce obtained at different farms. After inoculation and cultivation inside a vertical farm, lettuce root-associated bacterial community structures, diversity and compositions were determined by evaluating 16S rRNA gene sequences. The study revealed distinct bacterial community structures among experimental replicates, highlighting the influence of raw material variations on root-associated bacterial communities, even at the batch level. However, bacterial community inoculation allowed modulation of the root-associated bacterial communities independently from the plant-growing medium composition. Bacterial diversity was identified as a key determinant of plant growth performance with green waste compost introducing Bacilli and Actinobacteria, and bacterial community inoculum S3 introducing Pseudomonas, which positively correlated with plant growth. These findings challenge the prevailing notion of hydroponic cultivation systems as sterile environments and highlight the significance of proper plant-growing media raw material selection and bacterial community inoculation in shaping root-associated microbiomes that provide stability through microbial diversity. This study supports the concept of creating bacterially enhanced plant-growing media to promote plant growth in controlled environment agriculture.


Assuntos
Agricultura , Bactérias , RNA Ribossômico 16S/genética , Bactérias/genética , Plantas/genética , Solo/química , Raízes de Plantas/microbiologia , Microbiologia do Solo
4.
New Phytol ; 240(5): 1883-1899, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37787103

RESUMO

Upon exposure to light, etiolated Arabidopsis seedlings form adventitious roots (AR) along the hypocotyl. While processes underlying lateral root formation are studied intensively, comparatively little is known about the molecular processes involved in the initiation of hypocotyl AR. AR and LR formation were studied using a small molecule named Hypocotyl Specific Adventitious Root INducer (HYSPARIN) that strongly induces AR but not LR formation. HYSPARIN does not trigger rapid DR5-reporter activation, DII-Venus degradation or Ca2+ signalling. Transcriptome analysis, auxin signalling reporter lines and mutants show that HYSPARIN AR induction involves nuclear TIR1/AFB and plasma membrane TMK auxin signalling, as well as multiple downstream LR development genes (SHY2/IAA3, PUCHI, MAKR4 and GATA23). Comparison of the AR and LR induction transcriptome identified SAURs, AGC kinases and OFP transcription factors as specifically upregulated by HYSPARIN. Members of the SAUR19 subfamily, OFP4 and AGC2 suppress HYS-induced AR formation. While SAUR19 and OFP subfamily members also mildly modulate LR formation, AGC2 regulates only AR induction. Analysis of HYSPARIN-induced AR formation uncovers an evolutionary conservation of auxin signalling controlling LR and AR induction in Arabidopsis seedlings and identifies SAUR19, OFP4 and AGC2 kinase as novel regulators of AR formation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Hipocótilo/metabolismo , Proteínas de Arabidopsis/metabolismo , Plântula , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/metabolismo
5.
New Phytol ; 240(5): 1900-1912, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37743759

RESUMO

Lateral root (LR) positioning and development rely on the dynamic interplay between auxin production, transport but also inactivation. Nonetheless, how the latter affects LR organogenesis remains largely uninvestigated. Here, we systematically analyze the impact of the major auxin inactivation pathway defined by GRETCHEN HAGEN3-type (GH3) auxin conjugating enzymes and DIOXYGENASE FOR AUXIN OXIDATION1 (DAO1) in all stages of LR development using reporters, genetics and inhibitors in Arabidopsis thaliana. Our data demonstrate that the gh3.1/2/3/4/5/6 hextuple (gh3hex) mutants display a higher LR density due to increased LR initiation and faster LR developmental progression, acting epistatically over dao1-1. Grafting and local inhibitor applications reveal that root and shoot GH3 activities control LR formation. The faster LR development in gh3hex is associated with GH3 expression domains in and around developing LRs. The increase in LR initiation is associated with accelerated auxin response oscillations coinciding with increases in apical meristem size and LR cap cell death rates. Our research reveals how GH3-mediated auxin inactivation attenuates LR development. Local GH3 expression in LR primordia attenuates development and emergence, whereas GH3 effects on pre-initiation stages are indirect, by modulating meristem activities that in turn coordinate root growth with LR spacing.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Meristema/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Front Plant Sci ; 14: 1210092, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521921

RESUMO

Susceptibility of the reproductive system to temperature fluctuations is a recurrent problem for crop production under a changing climate. The damage is complex as multiple processes in male and female gamete formation are affected, but in general, particularly pollen production is impaired. Here, the impact of short periods of elevated temperature on male meiosis of tomato (Solanum lycopersicon L.) is reported. Meiocytes in early stage flower buds exposed to heat stress (>35°C) exhibit impaired homolog synapsis resulting in partial to complete omission of chiasmata formation. In the absence of chiasmata, univalents segregate randomly developing unbalanced tetrads and polyads resulting in aneuploid spores. However, most heat-stressed meiotic buds primarily contain balanced dyads, indicating a propensity to execute meiotic restitution. With most meiocytes exhibiting a complete loss of chiasma formation and concomitantly showing a mitotic-like division, heat stress triggers first division restitution resulting in clonal spores. These findings corroborate with the plasticity of male meiosis under heat and establish a natural route for the induction of sexual polyploidization in plants and the engineering of clonal seed.

7.
Plant Cell ; 35(9): 3280-3302, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37378595

RESUMO

Protein activities depend heavily on protein complex formation and dynamic posttranslational modifications, such as phosphorylation. The dynamic nature of protein complex formation and posttranslational modifications is notoriously difficult to monitor in planta at cellular resolution, often requiring extensive optimization. Here, we generated and exploited the SYnthetic Multivalency in PLants (SYMPL)-vector set to assay protein-protein interactions (PPIs) (separation of phases-based protein interaction reporter) and kinase activities (separation of phases-based activity reporter of kinase) in planta, based on phase separation. This technology enabled easy detection of inducible, binary and ternary PPIs among cytoplasmic and nuclear proteins in plant cells via a robust image-based readout. Moreover, we applied the SYMPL toolbox to develop an in vivo reporter for SNF1-related kinase 1 activity, allowing us to visualize tissue-specific, dynamic SnRK1 activity in stable transgenic Arabidopsis (Arabidopsis thaliana) plants. The SYMPL cloning toolbox provides a means to explore PPIs, phosphorylation, and other posttranslational modifications with unprecedented ease and sensitivity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fosforilação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Processamento de Proteína Pós-Traducional , Plantas Geneticamente Modificadas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
8.
J Exp Bot ; 74(12): 3503-3517, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36928121

RESUMO

Somatic hybrids between distant species offer a remarkable model to study genomic recombination events after mitochondrial fusion. Recently, we described highly chimeric mitogenomes in two somatic hybrids between the Solanaceae Nicotiana tabacum and Hyoscyamus niger resulting from interparental homologous recombination. To better examine the recombination map in somatic hybrid mitochondria, we developed a more sensitive bioinformatic strategy to detect recombination activity based on high-throughput sequencing without assembling the hybrid mitogenome. We generated a new intergeneric somatic hybrid between N. tabacum and Physochlaina orientalis, and re-analyzed the somatic hybrids that we previously generated. We inferred 213 homologous recombination events across repeats of 2.1 kb on average. Most of them (~80%) were asymmetrical, consistent with the break-induced replication pathway. Only rare (2.74%) non-homologous events were detected. Interestingly, independent events frequently occurred in the same regions within and across somatic hybrids, suggesting the existence of recombination hotspots in plant mitogenomes. Break-induced replication is the main pathway of interparental recombination in somatic hybrid mitochondria. Findings of this study are relevant to mitogenome editing assays and to mechanistic aspects of DNA integration following mitochondrial DNA horizontal transfer events.


Assuntos
Transferência Genética Horizontal , Mitocôndrias , Mitocôndrias/genética , Nicotiana/genética , Reparo do DNA , Recombinação Homóloga
9.
EMBO Rep ; 24(4): e56271, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36718777

RESUMO

Although strongly influenced by environmental conditions, lateral root (LR) positioning along the primary root appears to follow obediently an internal spacing mechanism dictated by auxin oscillations that prepattern the primary root, referred to as the root clock. Surprisingly, none of the hitherto characterized PIN- and ABCB-type auxin transporters seem to be involved in this LR prepatterning mechanism. Here, we characterize ABCB15, 16, 17, 18, and 22 (ABCB15-22) as novel auxin-transporting ABCBs. Knock-down and genome editing of this genetically linked group of ABCBs caused strongly reduced LR densities. These phenotypes were correlated with reduced amplitude, but not reduced frequency of the root clock oscillation. High-resolution auxin transport assays and tissue-specific silencing revealed contributions of ABCB15-22 to shootward auxin transport in the lateral root cap (LRC) and epidermis, thereby explaining the reduced auxin oscillation. Jointly, these data support a model in which LRC-derived auxin contributes to the root clock amplitude.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Membrana Transportadoras/genética , Ácidos Indolacéticos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Front Plant Sci ; 13: 862398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783951

RESUMO

Calcium-dependent protein kinases (CPK) are key components of a wide array of signaling pathways, translating stress and nutrient signaling into the modulation of cellular processes such as ion transport and transcription. However, not much is known about CPKs in endomembrane trafficking. Here, we screened for CPKs that impact on root growth and gravitropism, by overexpressing constitutively active forms of CPKs under the control of an inducible promoter in Arabidopsis thaliana. We found that inducible overexpression of an constitutive active CPK30 (CA-CPK30) resulted in a loss of root gravitropism and ectopic auxin accumulation in the root tip. Immunolocalization revealed that CA-CPK30 roots have reduced PIN protein levels, PIN1 polarity defects and impaired Brefeldin A (BFA)-sensitive trafficking. Moreover, FM4-64 uptake was reduced, indicative of a defect in endocytosis. The effects on BFA-sensitive trafficking were not specific to PINs, as BFA could not induce aggregation of ARF1- and CHC-labeled endosomes in CA-CPK30. Interestingly, the interference with BFA-body formation, could be reverted by increasing the extracellular pH, indicating a pH-dependence of this CA-CPK30 effect. Altogether, our data reveal an important role for CPK30 in root growth regulation and endomembrane trafficking in Arabidopsis thaliana.

12.
Front Plant Sci ; 13: 837441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845677

RESUMO

A survey of plant-based wastes identified sunflower (Helianthus annuus) bark extract (SBE), produced via twin-screw extrusion, as a potential biostimulant. The addition of SBE to Arabidopsis (Arabidopsis thaliana) seedlings cultured in vitro showed a dose-dependent response, with high concentrations causing severe growth inhibition. However, when priming seeds with SBE, a small but significant increase in leaf area was observed at a dose of 0.5 g of lyophilized powder per liter. This optimal concentration of SBE in the culturing medium alleviated the growth inhibition caused by 100 mM NaCl. The recovery in shoot growth was accompanied by a pronounced increase in photosynthetic pigment levels and a stabilization of osmotic homeostasis. SBE-primed leaf discs also showed a similar protective effect. SBE mitigated salt stress by reducing the production of reactive oxygen species (ROS) (e.g., hydrogen peroxide) by about 30% and developing more expanded true leaves. This reduction in ROS levels was due to the presence of antioxidative agents in SBE and by activating ROS-eliminating enzymes. Polyphenols, carbohydrates, proteins, and other bioactive compounds detected in SBE may have contributed to the cellular redox homeostasis in salt-stressed plants, thus promoting early leaf development by relieving shoot apical meristem arrest. Sunflower stalks from which SBE is prepared can therefore potentially be valorized as a source to produce biostimulants for improving salt stress tolerance in crops.

13.
Sci Rep ; 12(1): 8792, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614331

RESUMO

Recovering biostimulant compounds from by-products of crops is a promising strategy to add value, enhance sustainability, and increase the environmental safety of the agricultural production chain. Here, we report consistent root and shoot growth-stimulating bioactivity present in water-based extracts from Belgian endive forced roots (Cichorium intybus var. foliosum) over two consecutive harvest years. The shoot and the primary root of in vitro cultivated Arabidopsis thaliana treated with Belgian endive extract were about 30% increased in size compared to plants grown under control conditions. The ornamental species Plectranthus esculentus also showed enhanced in vitro shoot and root growth, suggesting bioactivity on a broad range of species. Fractionation of the Belgian endive extracts into aqueous and organic subfractions coupled with bioactivity measurements showed that the principal root and shoot growth-promoting ingredients are primarily water-soluble. NMR-based characterization of the bioactive aqueous fractions revealed the presence of predominantly sugars and organic acids. Malate and sugars were abundant and common to all water fractions, suggesting these molecules contributed to the growth stimulation phenotype. The findings indicate that Belgian endive roots are a source for the development of organic waste-derived biostimulants with potential for application in tissue culture and putatively for soil-grown crop production.


Assuntos
Arabidopsis , Asteraceae , Cichorium intybus , Bélgica , Produtos Agrícolas , Extratos Vegetais , Raízes de Plantas , Açúcares , Verduras , Água
14.
J Exp Bot ; 73(16): 5543-5558, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35617147

RESUMO

Pollen development is dependent on the tapetum, a sporophytic anther cell layer surrounding the microspores that functions in pollen wall formation but is also essential for meiosis-associated development. There is clear evidence of crosstalk and co-regulation between the tapetum and microspores, but how this is achieved is currently not characterized. ABORTED MICROSPORES (AMS), a tapetum transcription factor, is important for pollen wall formation, but also has an undefined role in early pollen development. We conducted a detailed investigation of chromosome behaviour, cytokinesis, radial microtubule array (RMA) organization, and callose formation in the ams mutant. Early meiosis initiates normally in ams, shows delayed progression after the pachytene stage, and then fails during late meiosis, with disorganized RMA, defective cytokinesis, abnormal callose formation, and microspore degeneration, alongside abnormal tapetum development. Here, we show that selected meiosis-associated genes are directly repressed by AMS, and that AMS is essential for late meiosis progression. Our findings indicate that AMS has a dual function in tapetum-meiocyte crosstalk by playing an important regulatory role during late meiosis, in addition to its previously characterized role in pollen wall formation. AMS is critical for RMA organization, callose deposition, and therefore cytokinesis, and is involved in the crosstalk between the gametophyte and sporophytic tissues, which enables synchronous development of tapetum and microspores.


Assuntos
Regulação da Expressão Gênica de Plantas , Pólen , Células Germinativas Vegetais , Meiose , Pólen/metabolismo , Fatores de Transcrição/metabolismo
15.
Int J Mol Sci ; 23(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628112

RESUMO

Photomorphogenic responses of etiolated seedlings include the inhibition of hypocotyl elongation and opening of the apical hook. In addition, dark-grown seedlings respond to light by the formation of adventitious roots (AR) on the hypocotyl. How light signaling controls adventitious rooting is less well understood. Hereto, we analyzed adventitious rooting under different light conditions in wild type and photomorphogenesis mutants in Arabidopsis thaliana. Etiolation was not essential for AR formation but raised the competence to form AR under white and blue light. The blue light receptors CRY1 and PHOT1/PHOT2 are key elements contributing to the induction of AR formation in response to light. Furthermore, etiolation-controlled competence for AR formation depended on the COP9 signalosome, E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC (COP1), the COP1 interacting SUPPRESSOR OF PHYA-105 (SPA) kinase family members (SPA1,2 and 3) and Phytochrome-Interacting Factors (PIF). In contrast, ELONGATED HYPOCOTYL5 (HY5), suppressed AR formation. These findings provide a genetic framework that explains the high and low AR competence of Arabidopsis thaliana hypocotyls that were treated with dark, and light, respectively. We propose that light-induced auxin signal dissipation generates a transient auxin maximum that explains AR induction by a dark to light switch.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/genética , Hipocótilo/metabolismo , Ácidos Indolacéticos/farmacologia , Plântula/genética , Plântula/metabolismo
16.
Front Plant Sci ; 13: 836702, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498677

RESUMO

Today's agriculture faces many concerns in maintaining crop yield while adapting to climate change and transitioning to more sustainable cultivation practices. The application of plant biostimulants (PBs) is one of the methods that step forward to address these challenges. The advantages of PBs have been reported numerous times. Yet, there is a general lack of quantitative assessment of the overall impact of PBs on crop production. Here we report a comprehensive meta-analysis on biostimulants (focus on non-microbial PBs) of over one thousand pairs of open-field data in a total of 180 qualified studies worldwide. Yield gains in open-field cultivation upon biostimulant application were compared across different parameters: biostimulant category, application method, crop species, climate condition, and soil property. The overall results showed that (1) the add-on yield benefit among all biostimulant categories is on average 17.9% and reached the highest potential via soil treatment; (2) biostimulant applied in arid climates and vegetable cultivation had the highest impact on crop yield; and (3) biostimulants were more efficient in low soil organic matter content, non-neutral, saline, nutrient-insufficient, and sandy soils. This systematic review provides general biostimulant application guidelines and gives consultants and growers insights into achieving an optimal benefit from biostimulant application.

17.
J Exp Bot ; 73(8): 2308-2319, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35085386

RESUMO

Much of what we know about the role of auxin in plant development derives from exogenous manipulations of auxin distribution and signaling, using inhibitors, auxins, and auxin analogs. In this context, synthetic auxin analogs, such as 1-naphthalene acetic acid (1-NAA), are often favored over the endogenous auxin, indole-3-acetic acid (IAA), in part due to their higher stability. While such auxin analogs have proven instrumental in revealing the various faces of auxin, they display in some cases bioactivities distinct from IAA. Here, we focused on the effect of auxin analogs on the accumulation of PIN proteins in brefeldin A-sensitive endosomal aggregations (BFA bodies), and correlation with the ability to elicit Ca2+ responses. For a set of commonly used auxin analogs, we evaluated if auxin analog-induced Ca2+ signaling inhibits PIN accumulation. Not all auxin analogs elicited a Ca2+ response, and their differential ability to elicit Ca2+ responses correlated partially with their ability to inhibit BFA-body formation. However, in tir1/afb and cngc14, 1-NAA-induced Ca2+ signaling was strongly impaired, yet 1-NAA still could inhibit PIN accumulation in BFA bodies. This demonstrates that TIR1/AFB-CNGC14-dependent Ca2+ signaling does not inhibit BFA body formation in Arabidopsis roots.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo
18.
Front Plant Sci ; 13: 894208, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684719

RESUMO

Reversible protein phosphorylation is a post-translational modification involved in virtually all plant processes, as it mediates protein activity and signal transduction. Here, we probe dynamic protein phosphorylation during de novo shoot organogenesis in Arabidopsis thaliana. We find that application of three kinase inhibitors in various time intervals has different effects on root explants. Short exposures to the putative histidine (His) kinase inhibitor TCSA during the initial days on shoot induction medium (SIM) are detrimental for regeneration in seven natural accessions. Investigation of cytokinin signaling mutants, as well as reporter lines for hormone responses and shoot markers, suggests that TCSA impedes cytokinin signal transduction via AHK3, AHK4, AHP3, and AHP5. A mass spectrometry-based phosphoproteome analysis further reveals profound deregulation of Ser/Thr/Tyr phosphoproteins regulating protein modification, transcription, vesicle trafficking, organ morphogenesis, and cation transport. Among TCSA-responsive factors are prior candidates with a role in shoot apical meristem patterning, such as AGO1, BAM1, PLL5, FIP37, TOP1ALPHA, and RBR1, as well as proteins involved in polar auxin transport (e.g., PIN1) and brassinosteroid signaling (e.g., BIN2). Putative novel regeneration determinants regulated by TCSA include RD2, AT1G52780, PVA11, and AVT1C, while NAIP2, OPS, ARR1, QKY, and aquaporins exhibit differential phospholevels on control SIM. LC-MS/MS data are available via ProteomeXchange with identifier PXD030754.

19.
Genes (Basel) ; 12(8)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34440314

RESUMO

Roots are composed of different root types and, in the dicotyledonous Arabidopsis, typically consist of a primary root that branches into lateral roots. Adventitious roots emerge from non-root tissue and are formed upon wounding or other types of abiotic stress. Here, we investigated adventitious root (AR) formation in Arabidopsis hypocotyls under conditions of altered abscisic acid (ABA) signaling. Exogenously applied ABA suppressed AR formation at 0.25 µM or higher doses. AR formation was less sensitive to the synthetic ABA analog pyrabactin (PB). However, PB was a more potent inhibitor at concentrations above 1 µM, suggesting that it was more selective in triggering a root inhibition response. Analysis of a series of phosphonamide and phosphonate pyrabactin analogs suggested that adventitious root formation and lateral root branching are differentially regulated by ABA signaling. ABA biosynthesis and signaling mutants affirmed a general inhibitory role of ABA and point to PYL1 and PYL2 as candidate ABA receptors that regulate AR inhibition.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Transdução de Sinais , Arabidopsis/metabolismo , Hipocótilo/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
20.
Microorganisms ; 9(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207399

RESUMO

Recovery of nutrients from source-separated urine can truncate our dependency on synthetic fertilizers, contributing to more sustainable food production. Urine-derived fertilizers have been successfully applied in soilless cultures. However, little is known about the adaptation of the plant to the nutrient environment. This study investigated the impact of urine-derived fertilizers on plant performance and the root-associated bacterial community of hydroponically grown lettuce (Lactuca sativa L.). Shoot biomass, chlorophyll, phenolic, antioxidant, and mineral content were associated with shifts in the root-associated bacterial community structures. K-struvite, a high-performing urine-derived fertilizer, supported root-associated bacterial communities that overlapped most strongly with control NPK fertilizer. Contrarily, lettuce performed poorly with electrodialysis (ED) concentrate and hydrolyzed urine and hosted distinct root-associated bacterial communities. Comparing the identified operational taxonomic units (OTU) across the fertilizer conditions revealed strong correlations between specific bacterial genera and the plant physiological characteristics, salinity, and NO3-/NH4+ ratio. The root-associated bacterial community networks of K-struvite and NPK control fertilized plants displayed fewer nodes and node edges, suggesting that good plant growth performance does not require highly complex ecological interactions in hydroponic growth conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA