Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heart Rhythm ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38762820

RESUMO

BACKGROUND: Implantable cardioverter-defibrillators last longer, and interest in reliable leads with targeted lead placement is growing. The OmniaSecure™ defibrillation lead is a novel small-diameter, catheter-delivered lead designed for targeted placement, based on the established SelectSecure SureScan MRI Model 3830 lumenless pacing lead platform. OBJECTIVE: This trial assessed safety and efficacy of the OmniaSecure defibrillation lead. METHODS: The worldwide LEADR pivotal clinical trial enrolled patients indicated for de novo implantation of a primary or secondary prevention implantable cardioverter-defibrillator/cardiac resynchronization therapy defibrillator, all of whom received the study lead. The primary efficacy end point was successful defibrillation at implantation per protocol. The primary safety end point was freedom from study lead-related major complications at 6 months. The primary efficacy and safety objectives were met if the lower bound of the 2-sided 95% credible interval was >88% and >90%, respectively. RESULTS: In total, 643 patients successfully received the study lead, and 505 patients have completed 12-month follow-up. The lead was placed in the desired right ventricular location in 99.5% of patients. Defibrillation testing at implantation was completed in 119 patients, with success in 97.5%. The Kaplan-Meier estimated freedom from study lead-related major complications was 97.1% at 6 and 12 months. The trial exceeded the primary efficacy and safety objective thresholds. There were zero study lead fractures and electrical performance was stable throughout the mean follow-up of 12.7 ± 4.8 months (mean ± SD). CONCLUSION: The OmniaSecure lead exceeded prespecified primary end point performance goals for safety and efficacy, demonstrating high defibrillation success and a low occurrence of lead-related major complications with zero lead fractures.

2.
Magn Reson Med ; 72(2): 409-17, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24186703

RESUMO

PURPOSE: A high-quality, reproducible, multi-slice T2-mapping protocol for the mouse heart is presented. METHODS: A T2-prepared sequence with composite 90° and 180° radiofrequency pulses in a segmented MLEV phase cycling scheme was developed. The T2-mapping protocol was optimized using simulations and evaluated with phantoms. RESULTS: Repeatability for determination of myocardial T2 values was assessed in vivo in n = 5 healthy mice on 2 different days. The average baseline T2 of the left ventricular myocardium was 22.5 ± 1.7 ms. The repeatability coefficient for R2 = 1/T2 for measurements at different days was ΔR2 = 6.3 s(−1). Subsequently, T2 mapping was applied in comparison to late-gadolinium-enhancement (LGE) imaging, to assess 1-day-old ischemia/reperfusion (IR) myocardial injury in n = 8 mice. T2 in the infarcts was significantly higher than in remote tissue, whereas remote tissue was not significantly different from baseline. Infarct sizes based on T2 versus LGE showed strong correlation. To assess the time-course of T2 changes in the infarcts, T2 mapping was performed at day 1, 3, and 7 after IR injury in a separate group of mice (n = 16). T2 was highest at day 3, in agreement with the expected time course of edema formation and resolution after myocardial infarction. CONCLUSION: T2 prepared imaging provides high quality reproducible T2 maps of healthy and diseased mouse myocardium.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Infarto do Miocárdio/patologia , Miocárdio/patologia , Animais , Camundongos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
3.
NMR Biomed ; 26(7): 728-44, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23703874

RESUMO

Liposomes are a versatile class of nanoparticles with tunable properties, and multiple liposomal drug formulations have been clinically approved for cancer treatment. In recent years, an extensive library of gadolinium (Gd)-containing liposomal MRI contrast agents has been developed for molecular and cellular imaging of disease-specific markers and for image-guided drug delivery. This review discusses the advances in the development and novel applications of paramagnetic liposomes in molecular and cellular imaging, and in image-guided drug delivery. A high targeting specificity has been achieved in vitro using ligand-conjugated paramagnetic liposomes. On targeting of internalizing cell receptors, the effective longitudinal relaxivity r1 of paramagnetic liposomes is modulated by compartmentalization effects. This provides unique opportunities to monitor the biological fate of liposomes. In vivo contrast-enhanced MRI studies with nontargeted liposomes have shown the extravasation of liposomes in diseases associated with endothelial dysfunction, such as tumors and myocardial infarction. The in vivo use of targeted paramagnetic liposomes has facilitated the specific imaging of pathophysiological processes, such as angiogenesis and inflammation. Paramagnetic liposomes loaded with drugs have been utilized for therapeutic interventions. MR image-guided drug delivery using such liposomes allows the visualization and quantification of local drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Lipossomos , Fenômenos Magnéticos , Imageamento por Ressonância Magnética , Imagem Molecular , Animais , Meios de Contraste , Humanos , Lipossomos/ultraestrutura
4.
PLoS One ; 8(4): e61510, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23585908

RESUMO

AIMS: Controversy exists in regard to the beneficial effects of transplanting cardiac or somatic progenitor cells upon myocardial injury. We have therefore investigated the functional short- and long-term consequences after intramyocardial transplantation of these cell types in a murine lesion model. METHODS AND RESULTS: Myocardial infarction (MI) was induced in mice (n = 75), followed by the intramyocardial injection of 1-2×10(5) luciferase- and GFP-expressing embryonic cardiomyocytes (eCMs), skeletal myoblasts (SMs), mesenchymal stem cells (MSCs) or medium into the infarct. Non-treated healthy mice (n = 6) served as controls. Bioluminescence and fluorescence imaging confirmed the engraftment and survival of the cells up to seven weeks postoperatively. After two weeks MRI was performed, which showed that infarct volume was significantly decreased by eCMs only (14.8±2.2% MI+eCM vs. 26.7±1.6% MI). Left ventricular dilation was significantly decreased by transplantation of any cell type, but most efficiently by eCMs. Moreover, eCM treatment increased the ejection fraction and cardiac output significantly to 33.4±2.2% and 22.3±1.2 ml/min. In addition, this cell type exclusively and significantly increased the end-systolic wall thickness in the infarct center and borders and raised the wall thickening in the infarct borders. Repetitive echocardiography examinations at later time points confirmed that these beneficial effects were accompanied by better survival rates. CONCLUSION: Cellular cardiomyoplasty employing contractile and electrically coupling embryonic cardiomyocytes (eCMs) into ischemic myocardium provoked significantly smaller infarcts with less adverse remodeling and improved cardiac function and long-term survival compared to transplantation of somatic cells (SMs and MSCs), thereby proving that a cardiomyocyte phenotype is important to restore myocardial function.


Assuntos
Cardiomioplastia/métodos , Infarto do Miocárdio/terapia , Miócitos Cardíacos/transplante , Recuperação de Função Fisiológica , Animais , Débito Cardíaco/fisiologia , Embrião de Mamíferos , Genes Reporter , Injeções Intramusculares , Luciferases , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Mioblastos/citologia , Mioblastos/fisiologia , Mioblastos/transplante , Infarto do Miocárdio/mortalidade , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Volume Sistólico/fisiologia , Análise de Sobrevida , Transplante Autólogo , Função Ventricular Esquerda
5.
Contrast Media Mol Imaging ; 8(2): 117-26, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23281284

RESUMO

Reperfusion therapy is commonly applied after a myocardial infarction. Reperfusion, however, causes secondary damage. An emerging approach for treatment of ischemia-reperfusion (IR) injury involves the delivery of therapeutic nanoparticles to the myocardium to promote cell survival and constructively influence scar formation and myocardial remodeling. The aim of this study was to provide detailed understanding of the in vivo accumulation and distribution kinetics of lipid-based nanoparticles (micelles and liposomes) in a mouse model of acute and chronic IR injury. Both micelles and liposomes contained paramagnetic and fluorescent lipids and could therefore be visualized with magnetic resonance imaging (MRI) and confocal laser scanning microscopy (CLSM). In acute IR injury both types of nanoparticles accumulated massively and specifically in the infarcted myocardium as revealed by MRI and CLSM. Micelles displayed faster accumulation kinetics, probably owing to their smaller size. Liposomes occasionally co-localized with vessels and inflammatory cells. In chronic IR injury only minor accumulation of micelles was observed with MRI. Nevertheless, CLSM revealed specific accumulation of both micelles and liposomes in the infarct area 3 h after administration. Owing to their specific accumulation in the infarcted myocardium, lipid-based micelles and liposomes are promising vehicles for (visualization of) drug delivery in myocardial infarction.


Assuntos
Gadolínio DTPA , Lipídeos/farmacocinética , Nanopartículas , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Animais , Gadolínio DTPA/farmacocinética , Lipossomos/farmacocinética , Camundongos , Distribuição Tecidual
6.
J Nanobiotechnology ; 10: 37, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22929153

RESUMO

BACKGROUND: Inflammation plays an important role in many pathologies, including cardiovascular diseases, neurological conditions and oncology, and is considered an important predictor for disease progression and outcome. In vivo imaging of inflammatory cells will improve diagnosis and provide a read-out for therapy efficacy. Paramagnetic phosphatidylserine (PS)-containing liposomes were developed for magnetic resonance imaging (MRI) and confocal microscopy imaging of macrophages. These nanoparticles also provide a platform to combine imaging with targeted drug delivery. RESULTS: Incorporation of PS into liposomes did not affect liposomal size and morphology up to 12 mol% of PS. Liposomes containing 6 mol% of PS showed the highest uptake by murine macrophages, while only minor uptake was observed in endothelial cells. Uptake of liposomes containing 6 mol% of PS was dependent on the presence of Ca2+ and Mg2+. Furthermore, these 6 mol% PS-containing liposomes were mainly internalized into macrophages, whereas liposomes without PS only bound to the macrophage cell membrane. CONCLUSIONS: Paramagnetic liposomes containing 6 mol% of PS for MR imaging of macrophages have been developed. In vitro these liposomes showed specific internalization by macrophages. Therefore, these liposomes might be suitable for in vivo visualization of macrophage content and for (visualization of) targeted drug delivery to inflammatory cells.


Assuntos
Lipossomos/farmacocinética , Macrófagos/metabolismo , Fosfatidilserinas/farmacocinética , Animais , Cátions/química , Linhagem Celular , Membrana Celular/metabolismo , Lipossomos/química , Macrófagos/química , Macrófagos/citologia , Imageamento por Ressonância Magnética , Camundongos , Microscopia Confocal , Fagocitose , Fosfatidilserinas/química
7.
J Control Release ; 162(2): 276-85, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-22771978

RESUMO

Adverse cardiac remodeling after myocardial infarction ultimately causes heart failure. To stimulate reparative processes in the infarct, efficient delivery and retention of therapeutic agents is desired. This might be achieved by encapsulation of drugs in nanoparticles. The goal of this study was to characterize the distribution pattern of differently sized long-circulating lipid-based nanoparticles, namely micelles (~15 nm) and liposomes (~100 nm), in a mouse model of myocardial infarction (MI). MI was induced in mice (n=38) by permanent occlusion of the left coronary artery. Nanoparticle accumulation following intravenous administration was examined one day and one week after surgery, representing the acute and chronic phase of MI, respectively. In vivo magnetic resonance imaging of paramagnetic lipids in the micelles and liposomes was employed to monitor the trafficking of nanoparticles to the infarcted myocardium. Ex vivo high-resolution fluorescence microscopy of fluorescent lipids was used to determine the exact location of the nanoparticles in the myocardium. In both acute and chronic MI, micelles permeated the entire infarct area, which renders them very suited for the local delivery of cardioprotective or anti-remodeling drugs. Liposomes displayed slower and more restricted extravasation from the vasculature and are therefore an attractive vehicle for the delivery of pro-angiogenic drugs. Importantly, the ability to non-invasively visualize both micelles and liposomes with MRI creates a versatile approach for the development of effective cardioprotective therapeutic interventions.


Assuntos
Meios de Contraste/farmacocinética , Gadolínio DTPA/farmacocinética , Infarto do Miocárdio/metabolismo , Nanopartículas , Animais , Meios de Contraste/administração & dosagem , Monitoramento de Medicamentos , Gadolínio DTPA/administração & dosagem , Lipídeos/administração & dosagem , Lipídeos/farmacocinética , Lipossomos , Imageamento por Ressonância Magnética , Camundongos , Micelas , Miocárdio/metabolismo , Nanopartículas/administração & dosagem
8.
J Nanobiotechnology ; 10: 25, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22716048

RESUMO

BACKGROUND: The upregulation of intercellular adhesion molecule-1 (ICAM-1) on the endothelium of blood vessels in response to pro-inflammatory stimuli is of major importance for the regulation of local inflammation in cardiovascular diseases such as atherosclerosis, myocardial infarction and stroke. In vivo molecular imaging of ICAM-1 will improve diagnosis and follow-up of patients by non-invasive monitoring of the progression of inflammation. RESULTS: A paramagnetic liposomal contrast agent functionalized with anti-ICAM-1 antibodies for multimodal magnetic resonance imaging (MRI) and fluorescence imaging of endothelial ICAM-1 expression is presented. The ICAM-1-targeted liposomes were extensively characterized in terms of size, morphology, relaxivity and the ability for binding to ICAM-1-expressing endothelial cells in vitro. ICAM-1-targeted liposomes exhibited strong binding to endothelial cells that depended on both the ICAM-1 expression level and the concentration of liposomes. The liposomes had a high longitudinal and transversal relaxivity, which enabled differentiation between basal and upregulated levels of ICAM-1 expression by MRI. The liposome affinity for ICAM-1 was preserved in the competing presence of leukocytes and under physiological flow conditions. CONCLUSION: This liposomal contrast agent displays great potential for in vivo MRI of inflammation-related ICAM-1 expression.


Assuntos
Meios de Contraste/química , Células Endoteliais/metabolismo , Molécula 1 de Adesão Intercelular/química , Lipossomos/química , Imageamento por Ressonância Magnética/métodos , Animais , Linhagem Celular , Sistemas de Liberação de Medicamentos , Gadolínio/química , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Leucócitos/metabolismo , Lipossomos/metabolismo , Camundongos , Imagem Molecular , Resistência ao Cisalhamento , Estresse Mecânico , Fator de Necrose Tumoral alfa/metabolismo
9.
NMR Biomed ; 25(8): 953-68, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22308108

RESUMO

The use of contrast agents has added considerable value to the existing cardiac MRI toolbox that can be used to study murine myocardial infarction, as it enables detailed in vivo visualization of the molecular and cellular processes that occur in the infarcted and remote tissue. A variety of non-targeted and targeted contrast agents to study myocardial infarction are available and under development. Manganese, which acts as a calcium analogue, can be used to assess cell viability. Traditionally, low-molecular-weight Gd-containing contrast agents are employed to measure infarct size in a late gadolinium enhancement experiment. Gd-based blood-pool agents are used to study the vascular status of the myocardium. The use of targeted contrast agents facilitates more detailed imaging of pathophysiological processes in the acute and chronic infarct. Cell death was visualized by contrast agents functionalized with annexin A5 that binds specifically to phosphatidylserine accessible on dying cells and with an agent that binds to the exposed DNA of dead cells. Inflammation in the myocardium was depicted by contrast agents that target cell adhesion molecules expressed on activated endothelium, by contrast agents that are phagocytosed by inflammatory cells, and by using a probe that targets enzymes excreted by inflammatory cells. Cardiac remodeling processes were visualized with a contrast agent that binds to angiogenic vasculature and with an MR probe that specifically binds to collagen in the fibrotic myocardium. These recent advances in murine contrast-enhanced cardiac MRI have made a substantial contribution to the visualization of the pathophysiology of myocardial infarction, cardiac remodeling processes and the progression to heart failure, which helps to design new treatments. This review discusses the advances and challenges in the development and application of MRI contrast agents to study murine myocardial infarction.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Infarto do Miocárdio/diagnóstico , Animais , Gadolínio , Manganês , Camundongos , Infarto do Miocárdio/patologia , Miocárdio/patologia
10.
NMR Biomed ; 25(8): 969-84, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22311260

RESUMO

Mouse models are increasingly used to study the pathophysiology of myocardial infarction in vivo. In this area, MRI has become the gold standard imaging modality, because it combines high spatial and temporal resolution functional imaging with a large variety of methods to generate soft tissue contrast. In addition, (target-specific) MRI contrast agents can be employed to visualize different processes in the cascade of events following myocardial infarction. Here, the MRI sequence has a decisive role in the detection sensitivity of a contrast agent. However, a straightforward translation of clinically available protocols for human cardiac imaging to mice is not feasible, because of the small size of the mouse heart and its extremely high heart rate. This has stimulated intense research in the development of cardiac MRI protocols specifically tuned to the mouse with regard to timing parameters, acquisition strategies, and ECG- and respiratory-triggering methods to find an optimal trade-off between sensitivity, scan time, and image quality. In this review, a detailed analysis is given of the pros and cons of different mouse cardiac MR imaging methodologies and their application in contrast-enhanced MRI of myocardial infarction.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Infarto do Miocárdio/diagnóstico , Animais , Humanos , Imageamento Tridimensional , Camundongos , Miocárdio/patologia , Perfusão
11.
J Cardiovasc Magn Reson ; 13: 56, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21974927

RESUMO

BACKGROUND: Quantitative relaxation time measurements by cardiovascular magnetic resonance (CMR) are of paramount importance in contrast-enhanced studies of experimental myocardial infarction. First, compared to qualitative measurements based on signal intensity changes, they are less sensitive to specific parameter choices, thereby allowing for better comparison between different studies or during longitudinal studies. Secondly, T1 measurements may allow for quantification of local contrast agent concentrations. In this study, a recently developed 3D T1 mapping technique was applied in a mouse model of myocardial infarction to measure differences in myocardial T1 before and after injection of a liposomal contrast agent. This was then used to assess the concentration of accumulated contrast agent. MATERIALS AND METHODS: Myocardial ischemia/reperfusion injury was induced in 8 mice by transient ligation of the LAD coronary artery. Baseline quantitative T1 maps were made at day 1 after surgery, followed by injection of a Gd-based liposomal contrast agent. Five mice served as control group, which followed the same protocol without initial surgery. Twenty-four hours post-injection, a second T1 measurement was performed. Local ΔR1 values were compared with regional wall thickening determined by functional cine CMR and correlated to ex vivo Gd concentrations determined by ICP-MS. RESULTS: Compared to control values, pre-contrast T1 of infarcted myocardium was slightly elevated, whereas T1 of remote myocardium did not significantly differ. Twenty-four hours post-contrast injection, high ΔR1 values were found in regions with low wall thickening values. However, compared to remote tissue (wall thickening > 45%), ΔR1 was only significantly higher in severe infarcted tissue (wall thickening < 15%). A substantial correlation (r = 0.81) was found between CMR-based ΔR1 values and Gd concentrations from ex vivo ICP-MS measurements. Furthermore, regression analysis revealed that the effective relaxivity of the liposomal contrast agent was only about half the value determined in vitro. CONCLUSIONS: 3D cardiac T1 mapping by CMR can be used to monitor the accumulation of contrast agents in contrast-enhanced studies of murine myocardial infarction. The contrast agent relaxivity was decreased under in vivo conditions compared to in vitro measurements, which needs consideration when quantifying local contrast agent concentrations.


Assuntos
Albuminas , Meios de Contraste , Gadolínio DTPA , Imageamento Tridimensional , Imagem Cinética por Ressonância Magnética , Infarto do Miocárdio/diagnóstico , Traumatismo por Reperfusão Miocárdica/diagnóstico , Miocárdio/patologia , Albuminas/farmacocinética , Animais , Meios de Contraste/farmacocinética , Modelos Animais de Doenças , Gadolínio DTPA/farmacocinética , Lipossomos , Masculino , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Valor Preditivo dos Testes , Distribuição Tecidual
12.
NMR Biomed ; 24(2): 154-62, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20960583

RESUMO

Cardiac MR T(1) mapping is a promising quantitative imaging tool for the diagnosis and evaluation of cardiomyopathy. Here, we present a new preclinical cardiac MRI method enabling three-dimensional T(1) mapping of the mouse heart. The method is based on a variable flip angle analysis of steady-state MR imaging data. A retrospectively triggered three-dimensional FLASH (fast low-angle shot) sequence (3D IntraGate) enables a constant repetition time and maintains steady-state conditions. 3D T(1) mapping of the complete mouse heart could be achieved in 20 min. High-quality, bright-blood T(1) maps were obtained with homogeneous T(1) values (1764 ± 172 ms) throughout the myocardium. The repeatability coefficient of R(1) (1/T(1) ) in a specific region of the mouse heart was between 0.14 and 0.20 s(-1) , depending on the number of flip angles. The feasibility for detecting regional differences in ΔR(1) was shown with pre- and post-contrast T(1) mapping in mice with surgically induced myocardial infarction, for which ΔR(1) values up to 0.83 s(-1) were found in the infarct zone. The sequence was also investigated in black-blood mode, which, interestingly, showed a strong decrease in the apparent mean T(1) of healthy myocardium (905 ± 110 ms). This study shows that 3D T(1) mapping in the mouse heart is feasible and can be used to monitor regional changes in myocardial T(1), particularly in relation to pathology and in contrast-enhanced experiments to estimate local concentrations of (targeted) contrast agent.


Assuntos
Imageamento por Ressonância Magnética/métodos , Miocárdio/patologia , Animais , Masculino , Camundongos , Infarto do Miocárdio/patologia , Imagens de Fantasmas , Reprodutibilidade dos Testes
13.
Magn Reson Med ; 64(6): 1658-63, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20928892

RESUMO

A first-pass myocardial perfusion sequence for mouse cardiac MRI is presented. A segmented ECG-triggered acquisition combined with parallel imaging acceleration was used to capture the first pass of a Gd-DTPA bolus through the mouse heart with a temporal resolution of 300-400 msec. The method was applied in healthy mice (N = 5) and in mice with permanent occlusion of the left coronary artery (N = 6). Baseline semiquantitative perfusion values of healthy myocardium showed excellent reproducibility. Infarct regions revealed a significant decrease in the semiquantitative myocardial perfusion values (0.05 ± 0.02) compared to remote myocardium (0.20 ± 0.04). Myocardial areas of decreased perfusion correlated well to infarct areas identified on the delayed-enhancement scans. This protocol is a valuable addition to the mouse cardiac MRI toolbox for preclinical studies of ischemic heart disease.


Assuntos
Imageamento por Ressonância Magnética/métodos , Infarto do Miocárdio/diagnóstico , Animais , Meios de Contraste , Circulação Coronária/fisiologia , Modelos Animais de Doenças , Gadolínio DTPA , Imageamento por Ressonância Magnética/instrumentação , Masculino , Camundongos , Infarto do Miocárdio/fisiopatologia
14.
Methods Mol Biol ; 624: 325-42, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20217606

RESUMO

Apoptosis, or programmed cell death, is a morphologically and biochemically distinct form of cell death, which together with proliferation plays an important role in tissue development and homeostasis. Insufficient apoptosis is important in the pathology of various disorders such as cancer and autoimmune diseases, whereas a high apoptotic activity is associated with myocardial infarction, neurodegenerative diseases, and advanced atherosclerotic lesions. Consequently, apoptosis is recognized as an important therapeutic target, which should be either suppressed, e.g., during an ischemic cardiac infarction, or promoted, e.g., in the treatment of cancerous lesions. Imaging tools to address location, amount, and time course of apoptotic activity non-invasively in vivo are therefore of great clinical use in the evaluation of such therapies. This chapter reviews current literature and new developments in the application of nanoparticles for non-invasive apoptosis imaging. Focus is on functionalized nanoparticle contrast agents for MR imaging and bimodal nanoparticle agents that combine magnetic and fluorescent properties.


Assuntos
Apoptose , Imageamento por Ressonância Magnética/métodos , Nanotecnologia/métodos , Animais , Meios de Contraste , Humanos , Miocárdio/patologia , Neoplasias/diagnóstico
15.
Contrast Media Mol Imaging ; 4(1): 24-32, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19137542

RESUMO

Apoptosis plays an important role in the etiology of various diseases. Several studies have reported on the use of annexin A5-functionalized iron oxide particles for the detection of apoptosis with MRI, both in vitro and in vivo. The protein annexin A5 binds with high affinity to the phospholipid phosphatidylserine, which is exposed in the outer leaflet of the apoptotic cell membrane. When co-exposed to apoptotic stimuli, this protein was shown to internalize into endocytic vesicles. Therefore in the present study we investigated the possible internalization of commercially available annexin A5-functionalized iron oxide particles (r1 = 34.0 +/- 2.1 and r2 = 205.0 +/- 10.4 mm(-1) s(-1) at 20 MHz), and the effects of their spatial distribution on relaxation rates R2*, R2 and R1. Two different incubation procedures were performed, where (1) Jurkat cells were either incubated with the contrast agent after induction of apoptosis or (2) Jurkat cells were simultaneously incubated with the apoptotic stimulus and the contrast agent. Transmission electron microscopy images and relaxation rates showed that the first incubation strategy mainly resulted in binding of the annexin A5-iron oxide particles to the cell membrane, whereas the second procedure allowed extensive membrane-association as well as a small amount of internalization. Owing to the small extent of internalization, only minor differences were observed between the DeltaR2*/DeltaR2 and DeltaR2/DeltaR1 ratios of cell pellets with membrane-associated or internalized annexin A5 particles. Only the increase in R1 (DeltaR1) appeared to be diminished by the internalization. Internalization of annexin A5-iron oxide particles is also expected to occur in vivo, where the apoptotic stimulus and the contrast agent are simultaneously present. Where the extent of internalization in vivo is similar to that observed in the present study, both T2- and T2*-weighted MR sequences are considered suitable for the detection of these particles in vivo.


Assuntos
Anexina A5/metabolismo , Compostos Férricos/metabolismo , Nanopartículas/química , Apoptose , Cálcio/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Meios de Contraste , Humanos , Células Jurkat/metabolismo , Nanopartículas/ultraestrutura , Fosfatidilserinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA