RESUMO
Robotic devices have recently enhanced cochlear implantation by improving precision resulting in reduced intracochlear damage during electrode insertion. This study aimed to gain first insights into the expected dimensions of the cone-like workspace from the posterior tympanotomy towards the round window membrane. This retrospective chart review analyzed ten postoperative CT scans of adult patients who were implanted with a CI in the past ten years. The dimensions of the cone-like workspace were determined using four landmarks (P1-P4). In the anteroposterior range, P1 and P2 were defined on the edge of the bony layer over the facial nerve and chorda tympani nerve, respectively. In the inferosuperior range, P3 was defined on the bony edge of the incus buttress and P4 was obtained at a distance of 0.45 mm between the facial nerve and the chorda tympani nerve. After selecting the landmarks, the calculations of the dimensions of the surgical access space were done in a standardized coordinate system and presented using descriptive statistics. The cone-like space is limited by two maximal angles, α and ß. The average angle α of 19.84 (±3.55) degrees defines the angle towards the round window membrane between P1 and P2. The second average angle ß of 53.56 (±10.29) degrees defines the angle towards the round window membrane between P3 and P4. Based on the angles the mean anteroposterior range of 2.25 (±0.42) mm and mean inferosuperior range of 6.73 (±2.42) mm. The distance from the posterior tympanotomy to the round window membrane was estimated at 6.05 (±0.71) mm. These findings present data on the hypothetical maximum workspace in which a future robotically steered insertion tool can be positioned for an optimal automated electrode insertion. A larger sample size is necessary before generalizing these dimensions to a population. Further research including preoperative CT scans is needed for planning robotic-steered cochlear implantation.
RESUMO
The round window (RW) membrane plays an important role in normal inner ear mechanics. Occlusion or reinforcement of the RW has been described in the context of congenital anomalies or after cochlear implantation and is applied as a surgical treatment for hyperacusis. Multiple lumped and finite element models predict a low-frequency hearing loss with air conduction of up to 20 dB after RW reinforcement and limited to no effect on hearing with bone conduction stimulation. Experimental verification of these results, however, remains limited. Here, we present an experimental study measuring the impact of RW reinforcement on the middle and inner ear mechanics with air and bone conduction stimulation. In a within-specimen repeated measures design with human cadaveric specimens (n = 6), we compared the intracochlear pressures in scala vestibuli (PSV) and scala tympani (PST) before and after RW reinforcement with soft tissue, cartilage, and bone cement. The differential pressure (PDIFF) across the basilar membrane - known to be closely related to the hearing sensation - was calculated as the complex difference between PSV and PST. With air conduction stimulation, both PSV and PSTincreased on average up to 22 dB at frequencies below 1500 Hz with larger effect sizes for PST compared to PSV. The PDIFF, in contrast, decreased up to 11 dB at frequencies between 700 and 800 Hz after reinforcement with bone cement. With bone conduction, the average within-specimen effects were less than 5 dB for either PSV, PST, or PDIFF. The inter-specimen variability with bone conduction, however, was considerably larger than with air conduction. This experimental study shows that RW reinforcement impacts air conduction stimulation at low frequencies. Bone conduction stimulation seems to be largely unaffected. From a clinical point of view, these results support the hypothesis that delayed loss of air conduction hearing after cochlear implantation could be partially explained by the impact of RW reinforcement.
Assuntos
Estimulação Acústica , Condução Óssea , Cadáver , Janela da Cóclea , Humanos , Janela da Cóclea/fisiologia , Janela da Cóclea/cirurgia , Pressão , Idoso , Orelha Média/fisiologia , Orelha Média/cirurgia , Rampa do Tímpano/cirurgia , Rampa do Tímpano/fisiologia , Masculino , Feminino , Rampa do Vestíbulo/cirurgia , Rampa do Vestíbulo/fisiologia , Rampa do Vestíbulo/fisiopatologia , Cimentos Ósseos , Pessoa de Meia-Idade , Fenômenos Biomecânicos , Audição , Idoso de 80 Anos ou mais , Orelha Interna/fisiologia , Orelha Interna/fisiopatologiaRESUMO
The study evaluates the accuracy of predicting intracochlear pressure during bone conduction stimulation using promontory velocity and ear canal pressure, as less invasive alternatives to intracochlear pressure. Stimulating with a percutaneous bone conduction device implanted in six human cadaveric ears, measurements were taken across various intensities, frequencies, and stimulation positions. Results indicate that intracochlear pressure linearly correlates with ear canal pressure (R2 = 0.43, RMSE = 6.85 dB), and promontory velocity (R2 = 0.47, RMSE = 6.60 dB). Normalizing data to mitigate the influence of stimulation position leads to a substantial improvement in these correlations. R2 values increased substantially to 0.93 for both the ear canal pressure and the promontory velocity, with RMSE reduced considerably to 2.02 (for ear canal pressure) and 1.94 dB (for promontory velocity). Conclusively, both ear canal pressure and promontory velocity showed potential in predicting intracochlear pressure and the prediction accuracy notably enhanced when accounting for stimulation position. Ultimately, these findings advocate for the continued use of intracochlear pressure measurements to evaluate future bone conduction devices and illuminate the role of stimulation position in influencing the dynamics of bone conduction pathways.
RESUMO
HYPOTHESIS: Trauma to the osseous spiral lamina (OSL) or spiral ligament (SL) during cochlear implant (CI) insertion segregates with electrode type and induces localized intracochlear ossification and fibrosis. BACKGROUND: The goal of atraumatic CI insertion is to preserve intracochlear structures, limit reactive intracochlear tissue formation, and preserve residual hearing. Previous qualitative studies hypothesized a localized effect of trauma on intracochlear tissue formation; however, quantitative studies failed to confirm this. METHODS: Insertional trauma beyond the immediate insertion site was histologically assessed in 21 human temporal bones with a CI. Three-dimensional reconstructions were generated and virtually resectioned perpendicular to the cochlear spiral at high resolution. The cochlear volume occupied by ossification or fibrosis was determined at the midpoint of the trauma and compared with regions proximal and distal to this point. RESULTS: Seven cases, all implanted with precurved electrodes, showed an OSL fracture beyond the immediate insertion site. Significantly more intracochlear ossification was observed at the midpoint of the OSL fracture, compared with the -26 to -18 degrees proximal and 28 to 56 degrees distal to the center. No such pattern was observed for fibrosis. In the 12 cases with a perforation of the SL (9 straight and 3 precurved electrodes), no localized pattern of ossification or fibrosis was observed around these perforations. CONCLUSION: OSL fractures were observed exclusively with precurved electrodes in this study and may serve as a nidus for localized intracochlear ossification. Perforation of the SL, in contrast, predominantly occurred with straight electrodes and was not associated with localized ossification.
Assuntos
Implante Coclear , Implantes Cocleares , Humanos , Implantes Cocleares/efeitos adversos , Osteogênese , Eletrodos Implantados/efeitos adversos , Implante Coclear/efeitos adversos , Implante Coclear/métodos , Cóclea/diagnóstico por imagem , Cóclea/cirurgia , Cóclea/lesões , Osso Temporal/diagnóstico por imagem , Osso Temporal/cirurgia , Osso Temporal/patologia , FibroseRESUMO
OBJECTIVES: Current surgical techniques aim to preserve intracochlear structures during cochlear implant (CI) insertion to maintain residual cochlear function. The optimal technique to minimize damage, however, is still under debate. The aim of this study is to histologically compare insertional trauma and intracochlear tissue formation in humans with a CI implanted via different insertion techniques. METHODS: One recent temporal bone from a donor who underwent implantation of a full-length CI (576°) via round window (RW) insertion was compared with nine cases implanted via cochleostomy (CO) or extended round window (ERW) approach. Insertional trauma was assessed on H&E-stained histological sections. 3D reconstructions were generated and virtually re-sectioned to measure intracochlear volumes of fibrosis and neo-ossification. RESULTS: The RW insertion case showed electrode translocation via the spiral ligament. 2/9 CO/ERW cases showed no insertional trauma. The total volume of the cochlea occupied by fibro-osseous tissue was 10.8% in the RW case compared with a mean of 30.6% (range 8.7%-44.8%, N = 9) in the CO/ERW cases. The difference in tissue formation in the basal 5 mm of scala tympani, however, was even more pronounced when the RW case (12.3%) was compared with the cases with a CO/ERW approach (mean of 93.8%, range 81% to 100%, N = 9). CONCLUSIONS: Full-length CI insertions via the RW can be minimally traumatic at the cochlear base without inducing extensive fibro-osseous tissue formation locally. The current study further supports the hypothesis that drilling of the cochleostomy with damage to the endosteum incites a local tissue reaction. LEVEL OF EVIDENCE: 4: Case-control study Laryngoscope, 134:945-953, 2024.
Assuntos
Implante Coclear , Implantes Cocleares , Humanos , Implante Coclear/métodos , Estudos de Casos e Controles , Cóclea/cirurgia , Janela da Cóclea/cirurgia , Osso Temporal/cirurgia , Eletrodos ImplantadosRESUMO
Lumped element models facilitate investigating the fundamental mechanisms of human ear sound conduction. This systematic review aims to guide researchers to the optimal model for the investigated parameters. For this purpose, the literature was reviewed up to 12 July 2023, according to the PRISMA guidelines. Seven models are included via database searching, and another 19 via cross-referencing. The quality of the models is assessed by comparing the predicted middle ear transfer function, the tympanic membrane impedance, the energy reflectance, and the intracochlear pressures (ICPs) (scala vestibuli, scala tympani, and differential) with experimental data. Regarding air conduction (AC), the models characterize the pathway from the outer to the inner ear and accurately predict all six aforementioned parameters. This contrasts with the few existing bone conduction (BC) models that simulate only a part of the ear. In addition, these models excel at predicting one observable parameter, namely, ICP. Thus, a model that simulates BC from the coupling site to the inner ear is still lacking and would increase insights into the human ear sound conduction. Last, this review provides insights and recommendations to determine the appropriate model for AC and BC implants, which is highly relevant for future clinical applications.
Assuntos
Condução Óssea , Som , Humanos , Meios de Contraste , Bases de Dados Factuais , Impedância ElétricaRESUMO
HYPOTHESIS: There are clinically relevant differences in scalae anatomy and spiral ganglion neuron (SGN) quantity between incomplete partition type II (IP-II) and normal cochleae. BACKGROUND: IP-II is a commonly implanted cochlear malformation. Detailed knowledge of intracochlear three-dimensional (3D) morphology may assist with cochlear implant (CI) electrode selection/design and enable optimization of audiologic programming based on SGN maps. METHODS: IP-II (n = 11) human temporal bone histological specimens were identified from the National Institute on Deafness and Other Communication Disorders National Temporal Bone Registry and digitized. The cochlear duct, scalae, and surgically relevant anatomy were reconstructed in 3D. A machine learning algorithm was applied to map the location and number of SGNs. RESULTS: 3D scalae morphology of the basal turn was normal. Scala tympani (ST) remained isolated for 540 degrees before fusing with scala vestibuli. Mean ST volume reduced below 1 mm 2 after the first 340 degrees. Scala media was a distinct endolymphatic compartment throughout; mean ± standard deviation cochlear duct length was 28 ± 3 mm. SGNs were reduced compared with age-matched norms (mean, 48%; range, 5-90%). In some cases, SGNs failed to ascend Rosenthal's canal, remaining in an abnormal basalward modiolar location. Two forms of IP-II were seen: type A and type B. A majority (98-100%) of SGNs were located in the basal modiolus in type B IP-II, compared with 76 to 85% in type A. CONCLUSION: Hallmark features of IP-II cochleae include the following: 1) fusion of the ST and scala vestibuli at a mean of 540 degrees, 2) highly variable and overall reduced SGN quantity compared with normative controls, and 3) abnormal SGN distribution with cell bodies failing to ascend Rosenthal's canal.
Assuntos
Cóclea , Implantes Cocleares , Humanos , Cóclea/diagnóstico por imagem , Rampa do Tímpano , Rampa do Vestíbulo , Ducto CoclearRESUMO
A cochlear implant is a neuroprosthetic device that can restore speech perception for people with severe to profound hearing loss. Because of recent evolutions, a growing number of people with a cochlear implant have useful residual acoustic hearing. While combined electro-acoustic stimulation has been shown to improve speech perception for this group of people, some studies report limited adoption rates. Here, we present electro-vibrational stimulation as an alternative combined stimulation strategy that similarly targets the full cochlear reserve. This novel strategy combines the electrical stimulation by the cochlear implant with low-frequency bone conduction stimulation. In a first evaluation of electro-vibrational stimulation, speech perception in noise was assessed in 9 subjects with a CI and symmetrical residual hearing. We demonstrate a statistically significant and clinically relevant improvement for speech perception in noise of 1.9 dB signal-to-noise ratio. This effect was observed with a first prototype that provides vibrational stimulation to both ears with limited transcranial attenuation. Future integration of electro-vibrational stimulation into one single implantable device could ultimately allow cochlear implant users to benefit from their low-frequency residual hearing without the need for an additional insert earphone.
Assuntos
Implante Coclear , Implantes Cocleares , Percepção da Fala , Humanos , Audição , CócleaRESUMO
OBJECTIVE: This study aims to investigate patterns of cochlear ossification (CO) in cadaveric temporal bones of patients who underwent vestibular schwannoma (VS) surgery via the translabyrinthine (TL), middle cranial fossa (MF), or retrosigmoid (RS) approaches. STUDY DESIGN: Histopathologic analysis of cadaveric temporal bones. SETTING: Multi-institutional national temporal bone repository. METHODS: The National Institute of Deafness and Communication Disorders and House Temporal Bone Laboratory at the University of California, Los Angeles and the Massachusetts Eye and Ear Otopathology Laboratory were searched for cadaveric temporal bones with a history of VS for which microsurgery was performed. Exclusion criteria included non-VS and perioperative death within 30 days of surgery. Temporal bones were analyzed histologically for CO of the basal, middle, and apical turns. RESULTS: Of 92 temporal bones with a history of schwannoma from both databases, 12 of these cases met the inclusion criteria. The approaches for tumor excision included 2 MF, 4 RS, and 6 TL approaches. CO was observed in all temporal bones that had undergone TL surgery. Among temporal bones that had undergone MF or RS surgeries, 5/6 had no CO, and 1/6 had partial ossification. This single case was noted to have intraoperative vestibular violation after RS surgery upon histopathologic and chart review. CONCLUSION: In this temporal bone series, all temporal bones that had undergone TL demonstrated varying degrees of CO on histological analysis. MF and RS cases did not exhibit CO except in the case of vestibular violation. When cochlear implantation is planned or possible after VS surgery, surgeons may consider using a surgical approach that does not violate the labyrinth.
Assuntos
Implante Coclear , Neuroma Acústico , Vestíbulo do Labirinto , Humanos , Cadáver , Neuroma Acústico/cirurgia , Neuroma Acústico/patologia , Osteogênese , Estudos Retrospectivos , Osso Temporal/cirurgiaRESUMO
INTRODUCTION: Girls and women with Turner syndrome (TS) present with multiple ear and hearing problems, ranging from external morphologic abnormalities to sensorineural or conductive hearing loss. The exact pathophysiology behind these otological diseases is not yet completely understood. The aim of this study is to provide a systematic review on the prevalence of otological disease in TS. METHODS: We conducted a systematic review according to the PRISMA guidelines. A database search was performed in PubMed, Embase, Web of Science, and Cochrane library. RESULTS: The prevalence of otological disease as external ear deformities (20-62%), recurrent otitis media (24-48%), and hearing loss (36-84%) is high in TS. The auditory phenotype in TS is complex and seems to be dynamic with CHL due to middle ear disease at young age and sensorineural hearing loss later in life. CONCLUSION: This systematic review of the literature confirms that otological disease is definitely part of the widely variable phenotype in Turner patients. Strong evidence is lacking on the exact prevalence numbers, emphasizing the need for more prospective data gathering. Growing insights in its pathophysiology will help in the understanding and management of hearing problems in TS across lifespan.